

GenTech Narromine – Geotechnical Investigation

Job No.: G24049

Submitted to:

Phillip Yates Family Holdings Pty Ltd

Suite 402, Bowman House,

276 Edward St, Brisbane QLD 4000

Attn: Chris Philby

https://maasgroupholdings.sharepoint.com/sites/MacGeoProjects/Venture Documents/G24049/REPORT/G24049 - Narromine GI Report Rev01.docx P a g e | 1

Report No.: G24049

GenTech Narromine

REVISION CONTROL

Revision	Date	Details	Prepared By	Reviewed By
00	22 May 2024	Draft	Pathum Lakruwan	Martin Williams
01	4 September 2024	FINAL	Pathum Lakruwan	Martin Williams

Contents

1	INTR	ODUCTION
2	SCOP	E OF INVESTIGATION6
3	SITE	DESCRIPTION7
4	DESK	STUDY7
	4.1	Regional Geology8
	4.2	Acid Sulphate Maps9
	4.3	Naturally Occurring Asbestos Maps10
5	FIELD	WORK
	5.1	Service Location11
	5.2	GPS11
	5.3	Boreholes11
	5.4	Sampling11
	5.5	In Situ Testing
	5.5.1	Standard Penetration Testing11
	5.5.2	Dynamic Cone Penetrometer Testing12
	5.5.3	Pocket Penetrometer Testing12
	5.6	Laboratory Testing12
6	EXIST	ING SUBSURFACE CONDITIONS12
	6.1	Exploratory Hole Summary12
	6.2	Groundwater12
7	LABC	RATORY TEST RESULTS
8	GEOT	ECHNICAL ASSESSMENT
	8.1	Site Classification
	8.2	Foundations14
	8.2.1	Shallow Foundations14
	8.2.2	Pile Foundations15
	8.2.3	Geotechnical Strength Reduction Factor (AS2159)16
	8.2.4	Aggressive Soils16
	8.2.5	Earthquake Classification16
	8.2.6	Soil Dispersion17
	8.2.7	California Bearing Ratio (CBR)17

MACQUARIE GEOŢECH

9	EX	XCAVATION AND STABILITY				
	9.1		Cut B	latters	17	
	9.2		Drain	nage	17	
10		ΕA	RTHV	VORKS	17	
	10.1		Site P	Preparation	17	
	10.2		Re-us	se of Site Material	18	
	10.3		Traffi	icability	18	
11		СС	ONTAN	MINATION	19	
	11.1		Huma	an Health	19	
	11	.1.2	1	Heavy Metals	19	
	11	.1.2	2	Hydrocarbons	19	
	11	.1.3	3	PCBs, OC/OP Pesticides, Phenols	19	
	11.2		VENN	Л/ENM	19	
	11.3		Acid S	Sulphate Soils	19	
12		СС	DNCLL	JSION	20	

Figures

Figure 1: Site Location	7
Figure 2: Geology map extract	8
Figure 3: Acid Sulphate Risk Map	9
Figure 4: Naturally Occurring Asbestos Hazard Map	10

Tables

6
8
12
13
13
13
15
15
16
19

Appendices

Appendix A – Geotechnical Explanatory Notes

Appendix B – Site Plan

Appendix C – Exploratory Hole Logs

Appendix D – Laboratory Test Results

1 INTRODUCTION

At the request of Phillip Yates Family Holdings Pty Ltd, Macquarie Geotechnical (MG) has carried out a Geotechnical Investigation at the GenTech facility at 323 The McGrane Way, Narromine.

It is proposed to upgrade the sprinkler system, requiring the excavation of trenches across the site. In addition it is proposed to expand Sheds 3 and 4. The existing footing system is unknown, however, new footings are anticipated to be constructed as high-level pad/strip footings.

The objective of the investigation is to provide an Interpretive geotechnical report.

The comments and opinions expressed in this report are based on the ground conditions encountered during the site work and on the results of tests carried out in the field and in the laboratory. There may, however, be special conditions prevailing on the site which have not been disclosed by this investigation and which therefore have not been taken into account by this report.

2 SCOPE OF INVESTIGATION

The agreed scope of works are as follows:

- Undertake a brief desk study of the site to confirm the likely geological conditions of the site and to develop a geological model for the site.
- Undertake Before You Dig Australia (BYDA) services search. Service clearance was undertaken by an accredited service locator.
- Mobilisation of one drill rig, drilling, logging and sampling of fifteen boreholes, comprising five structural holes (SBH) and ten environmental holes (EBH) as per Table 1 below. Only fourteen holes could be completed as SBH01 was not undertaken due to waterlogged access.
- In-situ testing comprised of Standard Penetration Tests (SPT) at 1.50m intervals, Dynamic Cone Penetrometer (DCP) testing, Hand Shear Vane (HSV) testing and Pocket Penetrometer (PP).

Table 1. Durenole	Scope		
Hole ID	Easting	Northing	Depth (m)
EBH01	615040	6430545	1.5
EBH02	615084	6430528	1.5
EBH03	615152	6430529	1.5
EBH04	615247	6430503	1.5
EBH05	615375	6430480	1.5
EBH06	615412	6430542	1.5
EBH07	615349	6430575	1.5
EBH08	615247	6430592	1.5
EBH09	615151	6430604	1.5

Table 1: Borehole Scope

https://maasgroupholdings.sharepoint.com/sites/MacGeoProjects/Venture Documents/G24049/REPORT/G24049 - Narromine GI Report Rev01.docx P a g e | **6**

Hole ID	Easting	Northing	Depth (m)		
EBH10	615094	6430637	1.5		
SBH01	Not Undert	Not Undertaken Due To Waterlogged Acce			
SBH02	614968	6430573	6.45		
SBH03	615073	6430550	6.45		
SBH04	615120	6430547	6.45		
SBH05	615082	6430648	6.45		

- Samples were taken at regular intervals and at every change of strata to allow for laboratory testing and returned to our NATA accredited laboratory in Dubbo, NSW. Laboratory testing comprised the following:
 - Five Atterberg Limits and Linear Shrinkage tests.
 - Five Emerson Class tests.
 - One California Bearing Ratio (CBR) test (on composite sample).
 - Five Soil Aggressivity tests.
 - Ten suite of Contamination testing, including heavy metals and hydrocarbons.

3 SITE DESCRIPTION

The project is located at 323 The McGrane Way, Narromine.

Figure 1: Site Location

4 DESK STUDY

A brief desk study was undertaken using readily available geological and geotechnical information

and included the following:

https://maasgroupholdings.sharepoint.com/sites/MacGeoProjects/Venture Documents/G24049/REPORT/G24049 - Narromine GI Report Rev01.docx P a g e | 7

- Minview geology map
- ASRIS/CSIRO.
- Naturally Occurring Asbestos Hazard Maps.

4.1 Regional Geology

The Minview geology map is shown in Figure 2 below:

Figure 2: Geology map extract

With reference to the Minview geological map the site is underlain by the following:

Table 2: Summary of Geology

Geological Symbol	Group	Lithology
Q_m_b	Marra Creek Formation	Unconsolidated dark to pale grey and beige to pale yellow-grey clayey, sandy silt, silty clay and clay.

4.2 Acid Sulphate Maps

Reference is made to the Commonwealth Scientific and Industrial Research Organisation (CSIRO) Atlas of Australian Acid Sulphate Soils and presented in Figure 3 below:

Site Location

Figure 3: Acid Sulphate Risk Map

The acid sulphate risk map indicates a low probability of acid sulphate soils at the site.

4.3 Naturally Occurring Asbestos Maps

Reference is made to the NSW Department of Primary Industry Naturally Occurring Asbestos Hazard Maps and presented in Figure 4 below:

Figure 4: Naturally Occurring Asbestos Hazard Map

The map indicates no potential of Naturally Occurring Asbestos (NOA) at the site.

5 FIELDWORK

Fieldwork was undertaken between 4th to 9th April 2024 by an Engineering Geologist and Drillers from our Bathurst office. The fieldwork was undertaken in accordance with our proposal and AS1726 Geotechnical Site Investigation.

MACQUARIE GEOTECH

5.1 Service Location

MG obtained underground services and utility plans through 'Before You Dig – Australia (BYDA)' services. A qualified services locator from B4U Dig Locators was present on site to locate services and utilities near the proposed works prior to commencement of fieldwork.

5.2 GPS

All test locations were surveyed using a handheld GPS with co-ordinates recorded in MGA Zone 55 format and elevations in Australian Height Datum (AHD).

5.3 Boreholes

The boreholes were drilled at locations nominated by the client and are summarised in Table 1.

A D4TAPG was used to drill fourteen boreholes to depths of up to 6.45m utilising 115mm diameter solid flight augers. In situ testing comprised of Standard Penetration Tests (SPT) and Dynamic Cone Penetrometer (DCP) tests.

The boreholes were backfilled with arisings on completion.

Borehole logs and photographs are presented in Appendix C.

5.4 Sampling

The sampling was undertaken in general accordance with AS1289 1.2.1 and based on that defined in the proposal and considered the engineering requirements of the investigation and the nature of the materials encountered.

5.5 In Situ Testing

In-situ testing as specified by the client or our proposal was carried out in selected exploratory holes in accordance with the techniques outlined in the relevant Australian Standards and MG Quality procedures. The results are presented on the relevant exploratory hole logs in Appendix C.

5.5.1 Standard Penetration Testing

Standard Penetration Tests (SPT) were carried out in the boreholes with techniques outlined in AS1289 6.3.1 in order to determine the relative density and consistency of the strata encountered. The SPT "N" value (number of blows per 300mm penetration) or the blow count / penetration were recorded for each test.

5.5.2 Dynamic Cone Penetrometer Testing

Dynamic Cone Penetrometer (DCP) testing was carried out in the boreholes / test pits with techniques outlined in AS1289 6.3.2 in order to determine the relative density and consistency of the strata encountered. The numbers of blows per 100mm penetration were recorded.

5.5.3 Pocket Penetrometer Testing

Pocket Penetrometer (PP) testing was carried out on undisturbed samples and SPT split spoon samples.

5.6 Laboratory Testing

The samples were returned to Macquarie Geotechnical NATA accredited laboratory at Dubbo for further assessment and testing. The laboratory tests were carried out as per the laboratory testing indicated in the proposal.

6 EXISTING SUBSURFACE CONDITIONS

The subsurface conditions encountered in the boreholes are presented in detail in the attached borehole logs (refer Appendix C). The subsurface conditions encountered in all boreholes are broadly summarised in Table 3 below.

6.1 Exploratory Hole Summary

Unit	Name	Depth Range (m)	Maximum Thickness (m)	Material Description
1	Topsoil	0.00 - 0.10	0.10	TOPSOIL
2	Uncontrolled Fill	0.00 - 0.10	0.10	Silty Clay with gravel
6	Alluvial soil	0.10 - 6.45	Not Determined	Sandy CLAY and Silty CLAY

Table 3: Borehole Summary

6.2 Groundwater

The comments on groundwater are based on the observations made at the time of the investigation. Groundwater was not encountered in any of the boreholes at the time of investigation. It is possible that elevated groundwater levels may occur during wet periods. Seasonal variation in groundwater may also occur and should be considered as part of the design process.

7 LABORATORY TEST RESULTS

The laboratory tests were carried out on the samples nominated by Macquarie Geotechnical. The test results are shown in Tables 4 to 6 below and test certificates are attached in Appendix D.

		Comula	Atterberg Limits			Lincor	NA - interne	
Hole ID	Depth (m)	Sample Description (USCS)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	Linear Shrinkage (%)	Moisture Content (%)	Emerson Class
EBH01	0.50 - 1.00	Sandy Clay*	49	17	32	12.5		2
EBH04	0.50 - 1.00	Silty Clay*					14.7	
SBH02	0.18 - 0.50	Sandy Clay*					16.3	
SBH02	0.50 - 1.00	Sandy Clay*	46	15	31	9.5		2
SBH03	0.50 - 1.50	Sandy Clay*	50	19	31	11.5		2
SBH04	0.10 - 0.50	Sandy Clay*	45	16	29	10.0		2
SBH05	0.10 - 0.50	Silty Clay*	30	13	17	7.0		3

Note: USCS – Unified Soil Classification System.

*Visual description.

Table 5: Laboratory Test Results – California Bearing Ratio (CBR)

Hole ID	Depth		California Bearing Ratio (CBR)				
	(m)	Sample Description (USCS)	MDD (t/m³)	OMC (%)	CBR (%)	CBR Swell (%)	
SBH04	0.50 - 1.50	Sandy Clay*	1.74	17.0	5	1.5	

Note: USCS – Unified Soil Classification System, MDD – Maximum Dry Density, OMC – Optimum Moisture Content. * Visual description.

Hole	Double (m)	Council a Description	Soil Chemical Properties (SCP)					
ID	Depth (m)	Sample Description	рН	SO₄ (ppm)	Cl (ppm)	EC (uS/cm)		
EBH01	0.50 - 1.00	Silty Clay*	8.8	29	22	160		
EBH05	0.10 - 0.50	Silty Clay*	7.7	10	10	65		
SBH02	0.18 - 0.50	Sandy Clay*	8.7	22	28	140		
SBH03	0.50 - 1.50	Sandy Clay*	8.6	20	26	180		
SBH04	0.50 - 1.50	Sandy Clay*	8.6	33	49	180		

Table 6: Laboratory Test Results – Soil Chemical Properties

Note: * Visual description; SO₄ – Sulphate, Cl – Chloride, EC – Electrical Conductivity; *Visual description

8 GEOTECHNICAL ASSESSMENT

8.1 Site Classification

The classification of a site involves a number of geotechnical factors such as depth of bedrock, the nature and extent of subsurface soils and any specific problems (slope stability, soft soils, filling,

reactivity, etc). AS2870 specifically relates to construction of low rise residential dwellings and is not technically appropriate for industrial or commercial structures.

In accordance with AS2870 2011 the proposed development site will have an anticipated surface movement (Ys) of up to 55 mm and is classified as "Class H1-D".

AS2870, allows reclassification, if the reactive clays are excavated and replaced with minimum 800mm of compacted granular fill ie. sands/gravels to AS3798.

The current class is H1-D, excavating and replacing minimum 800mm will reduce to class M-D. Excavation and replacement should be undertaken to 1m beyond the foundation perimeter.

If pile foundations are utilised, shrink/swell movements could be accommodated by suspending the slab with a sub slab void or using void formers.

An appropriate footing system should be designed in accordance with the above code to accommodate these anticipated movements. The possibility of additional movements, due to abnormal moisture variations, should be minimised by proper "site management" procedures as provided on the attached sheet.

It should be noted that this assessment is based on site conditions being represented by the natural soil profile. Any change in conditions noted during development, including cut or fill should be referred to MG for appropriate inspection and assessment.

8.2 Foundations

The investigation indicates that the ground conditions generally comprised of a thin cover (0.1m) of Topsoil or Uncontrolled Fill material overlying Alluvial Clay.

Standard Penetration Tests (SPTs) carried out in the natural clays gave 'N' values in the range 19 to 51, increasing with depth, indicating a Very Stiff to Hard Consistency. Only EBH10 showed a near surface softening indicated by DCP testing to be 'soft to firm' consistency.

8.2.1 Shallow Foundations

Based on our investigation, and our experience in this region, MG consider that the site is suitable for the support of high level/shallow foundations comprising pad/strip or slab on grade foundations.

MG recommend the following geotechnical design parameters:

Depth (m)	Soil Unit Weight Effective Drained Stress Parameters Description (KN/m ³) C' ϕ' kPa Degrees				Undrained Shear Strength	Concrete to Soil Friction Angle δ
Deptii (iii)			Cu kPa	(degrees)		
	Alluvial Soil CLAY - Stiff	19	5	26	50	20
Varying Depth	Alluvial Soil CLAY Very Stiff to Hard	19	5	29	100	23

Table 7: Estimated Geotechnical Engineering Parameters

Table 8: Bearing Pressure

Depth (m)	Soil Description	Allowable Bearing Pressure (KPa)	Ultimate Bearing Pressure (KPa)	Modulus of Subgrade Reaction (MN/m³)
GL to 0.1	Topsoil/Fill	Not suitable for foundation support		oundation support
Variable	Stiff CLAY (ALLUVIAL)	85	255	15
Depth	Very stiff to hard CLAY (ALLUVIAL)	170	510	20

8.2.2 Pile Foundations

The following parameters are inferred and estimated based on site descriptions and limited in-situ testing.

The parameters provided below are dependent on the pile foundations being embedded a minimum of 4 x the pile diameter into the designated foundation strata. We have also assumed that ground conditions do not deteriorate below the investigated depths. The potential for encountering rock at greater depths cannot be discounted.

It is common for the top (minimum) 1.0m depth to be ignored in design to allow for ground disturbance factors.

https://maasgroupholdings.sharepoint.com/sites/MacGeoProjects/Venture Documents/G24049/REPORT/G24049 - Narromine GI Report Rev01.docx P a g e | **15**

For tension piles, the pullout resistance would be wholly dependent on skin friction.

Table 9: Piled Foundations

Depth (m)	Soil Description	Undrained Shear Strength Cu kPa	Ultimate End Bearing Capacity (KPa)	Ultimate Skin Friction (KPa)
GL to 0.1	Topsoil/FILL	Not	suitable for foundation	n support
Variable	Stiff CLAY	50	450	20
Depth	Very stiff to hard CLAY	100	900	40

8.2.3 Geotechnical Strength Reduction Factor (AS2159)

The geotechnical strength reduction factor for pile design is defined in the Piling Code. Selection of the geotechnical strength reduction factor (ϕ_g) is based on a series of individual risk ratings (IRR) which are weighted and lead to an average risk rating (ARR). The individual risk ratings and final value of (ϕ_g) depend on the following factors:

- Site: the type, quantity and quality of testing.
- Design: design methods and parameter selection.
- Installation: construction control and monitoring.
- Pile testing regime.
- Redundancy.

Without clear details about the pile type, design method, testing regime and other construction factors it is not possible to calculate the appropriate (ϕ_g) value. Assuming no pile testing, limited specialist geotechnical supervision during construction, and the limited/basic investigation and testing, a ϕ_g value of 0.48 is considered appropriate.

8.2.4 Aggressive Soils

We refer to Table 6.4.2 (c) Exposure Classification for Concrete Piles AS2159 – 2009 'Piling – Design and Installation'.

The soil condition is classified as 'Condition – B'. In addition the test results indicate low levels of sulfates and chlorides and normal pH. Therefore the soil at this site is non-aggressive. If groundwater

is encountered then it would be classified as Mild.

https://maasgroupholdings.sharepoint.com/sites/MacGeoProjects/Venture Documents/G24049/REPORT/G24049 - Narromine GI Report Rev01.docx P a g e | **16**

8.2.5 Earthquake Classification

The Australian Standard 'Structural Design Actions – Earthquake Actions in Australia' (AS 1170.4-2007) gives guidance on the design standards for earthquake loading. Based on the above Australian Standard and the results of the investigation, the following subsoil classification is recommended for design:

• Class Ce – Shallow Soil Site

8.2.6 Soil Dispersion

Based on the laboratory test results the soils are potentially dispersive.

8.2.7 California Bearing Ratio (CBR)

One lab CBR was undertaken giving CBR=5% at SBH04. This is further to the east than Sheds 3 & 4. However, the shallow ground conditions appear fairly uniform as a very stiff clay. A design CBR of 3% is recommended.

9 EXCAVATION AND STABILITY

The soils at the site comprise Fill material over Alluvial Clay and excavation should be achievable using standard conventional earthmoving equipment (e.g. excavators and scrapers). Rock was not encountered.

9.1 Cut Batters

The following cut batter angles are recommended for temporary and permanent conditions.

	Temporary	Permanent
Sands or Fill	1V:2H	1V:3H
Stiff/Hard Clay	1V:1H	1V:2H

9.2 Drainage

Drainage should be installed at the top of the cuttings to divert surface water runoff from the excavation and cut face during rainfall events.

10 EARTHWORKS

10.1 Site Preparation

The following scope of work is required as a minimum to prepare the site prior to construction:

- Prior to construction and placement of any fill, the proposed areas should be stripped to remove all vegetation, topsoil, uncontrolled fill, organic, root affected or other potentially deleterious material;
- Boxed-out excavations should be drained permanently to allow any infiltration from subsequent fill to escape the excavation profile.
- Where the ground slopes at more than 1V:10H (6°), the ground profile should be benched in 200mm vertical steps to create near-level platforms for filling. The platforms should be graded with a cross fall no steeper than 2% downslope to allow drainage of any infiltration to the fill and to prevent pooling of subsurface moisture.
- Following stripping, the exposed subgrade materials should be proof rolled in the presence of a suitably qualified and experienced Geotechnical Engineer to identify any wet or excessively deflecting material.
- Proof rolling should utilise an 8-tonne non-vibrating roller, trimming the rolled surface to level and clean finish; where there are areas indicating excessive deflection then these may require over-excavation and backfilling with an approved select material.
- Site filling should be undertaken to the provisions of AS3798-2007: "Earthworks for Residential and Commercial Developments".
- Fill for support of structures or equipment should be placed to Level 1 inspection and testing requirements as per the standard.

10.2 Re-use of Site Material

With the exception of the topsoil/thin fill cover, the majority of the site won soil material from excavations is considered suitable for use as general fill material. If the material is proposed to be used as engineered fill within the permanent works then some blending of the material with coarser particle sizes may be required to comply with specification grading requirements.

It should be appreciated that clay soils will require appropriate moisture conditioning (to be determined from standard compaction tests) to achieve optimum compaction.

Careful extraction and stockpile management will be required to optimise the potential volume of site won materials. Where feasible, material should be trucked directly to the placement site to avoid double handling and associated time and cost implications.

10.3 Trafficability

The clay subgrades would be trafficable during dry periods. Some desiccation of exposed surfaces can be expected and large quantities of dust may be generated during dry periods under traffic. The

soils may be soft and difficult to traverse following wet weather or inundation. Drying out of these soils could take several days or weeks before being able to accommodate construction traffic.

11 CONTAMINATION

Ten samples were submitted for a suite of contamination tests comprising Heavy Metals (As, Cd, Cr, Cu, Pb, Hg, Ni and Zn), Hydrocarbons (TRH, PAH, BTEX), PCBs, OC/OP Pesticides and Phenols. The contamination testing results are attached in Appendix D.

11.1 Human Health

Soil contamination results were compared against the HILs (Human Investigation Levels) and HSLs (Health Screening Levels) for a commercial/industrial end use – Class D as described in detail in Schedule B7 Section 3 of NEPM (National Environmental Protection Measures).

11.1.1 Heavy Metals

None of the samples tested exceeded the HILs for a NEPM Class D site.

11.1.2 Hydrocarbons

None of the samples tested for TRH (Total Recoverable Hydrocarbons) or BTEX (Benzene, Toluene, Ethylbenzene, Xylene) exceeded the HSLs (vapour intrusion) for a NEPM Class D site. The results were generally below detection limits.

None of the samples tested for PAH (Polycyclic Aromatic Hydrocarbons) exceeded the HILs for a NEPM Class D site. The results were generally below detection limits.

11.1.3 PCBs, OC/OP Pesticides, Phenols

None of the samples tested for PCBs, OC/OP Pesticides, Phenols exceeded laboratory detection limits.

11.2 VENM/ENM

Results were compared against the NSW EPA (Environmental Protection Agency) 'The excavated natural material order' 2014.

None of the samples tested exceeded the ENM (Excavated Natural Material) contaminant levels.

11.3 Acid Sulphate Soils

Five samples were tested for pH/pH_{fox} to assess for Potential Acid Sulphate Soils (PASS). All the samples tested showed a pH shift of >1 when hydrogen peroxide was introduced to oxidise the samples. Consequently, the samples are considered as PASS.

In order to determine if the samples are actual Acid Sulphate Soils (ASS), further Chromium Reducible Sulphur testing would be required.

It is noted that if soils prove to be ASS, then the soils cannot be classified as ENM/VENM, and even after acid nuetralisation using lime, would be classified as GSW (General Solid Waste). https://maasgroupholdings.sharepoint.com/sites/MacGeoProjects/Venture Documents/G24049/REPORT/G24049 - Narromine GI Report Rev01.docx P a g e 19

Table 10: sPOCAS field test (pH units)

Borehole ID	EBH02	EBH04	EBH06	EBH08	EBH10
Depth	0.3-0.5	0.3-0.5	1.3-1.5	0.3-0.5	0.3-0.5
pHF (field pH test)	6.8	5.9	7.4	6.7	7.1
pHFOX (field peroxide test)	4.6	4.6	6.6	6.3	5
Reaction Rate*	High reaction	High reaction	Volcanic reaction	Volcanic reaction	Volcanic reaction

12 CONCLUSION

The findings of our report were based on our fieldwork, in-situ testing, laboratory testing, technical assessment and local knowledge for this site.

We trust the foregoing is sufficient for your present purposes, and if you have any questions please contact the undersigned.

Pathum Lakruwan Geotechnical Engineer

Martin Williams Principal Geotechnical Engineer MSc CGeol CPEng

Attached:	Limitations of Geotechnical Site Investigation
References:	Australia Standard 2870-2011 Residential slabs and footings
	Australian Standard 1726 – 2017 Geotechnical Site Investigations
	Australian Standard 3798 – 2007 Earthworks for Residential and Commercial Developments
	Australian Standard 2159 – 2009 Piling – Design and Installation

LIMITATIONS OF GEOTECHNICAL SITE INVESTIGATION

Scope of Services

This report has been prepared for the Client in accordance with the Services Engagement Form (SEF), between the Client and Macquarie Geotechnical.

Reliance on Data

Macquarie Geotechnical has relied upon data and other information provided by the Client and other individuals. Macquarie Geotechnical has not verified the accuracy or completeness of the data, except as otherwise stated in the report. Recommendations in the report are based on the data.

Macquarie Geotechnical will not be liable in relation to incorrect recommendations should any data, information or condition be incorrect or have been concealed, withheld, misrepresented or otherwise not fully disclosed.

Geotechnical Investigation

Findings of Geotechnical Investigations are based extensively on judgment and experience. Geotechnical reports are prepared to meet the specific needs of individual clients. This report was prepared expressly for the Client and expressly for the Clients purposes.

This report is based on a subsurface investigation, which was designed for project-specific factors. Unless further geotechnical advice is obtained this report cannot be applied to an adjacent site nor can it be used when the nature of any proposed development is changed.

Limitations of Site investigation

As a result of the limited number of sub-surface excavations or boreholes there is the possibility that variations may occur between test locations. The investigation undertaken is an estimate of the general profile of the subsurface conditions. The data derived from the investigation and laboratory testing are extrapolated across the site to form a geological model. This geological model infers the subsurface conditions and their likely behavior with regard to the proposed development.

The actual conditions at the site might differ from those inferred to exist.

No subsurface exploration program, no matter how comprehensive, can reveal all subsurface details and anomalies.

Time Dependence

This report is based on conditions, which existed at the time of subsurface exploration. Construction operations at or adjacent to the site, and natural events such as floods, or groundwater fluctuations, may also affect subsurface conditions, and thus the continuing adequacy of a geotechnical report.

Macquarie Geotechnical should be kept appraised of any such events, and should be consulted for further geotechnical advice if any changes are noted.

Avoid Misinterpretation

A geotechnical engineer or engineering geologist should be retained to work with other design professionals explaining relevant geotechnical findings and in reviewing the adequacy of their plans and specifications relative to geotechnical issues.

https://maasgroupholdings.sharepoint.com/sites/MacGeoProjects/Venture Documents/G24049/REPORT/G24049 - Narromine GI Report Rev01.docx P a g e | **21**

No part of this report should be separated from the Final Report.

Sub-surface Logs

Sub-surface logs are developed by geoscientific professionals based upon their interpretation of field logs and laboratory evaluation of field samples. These logs should not under any circumstances be redrawn for inclusion in any drawings.

Geotechnical Involvement During Construction

During construction, excavation frequently exposes subsurface conditions. Geotechnical consultants should be retained through the construction stage, to identify variations if they are exposed.

Report for Benefit of Client

The report has been prepared for the benefit of the Client and no other party. Other parties should not rely upon the report or the accuracy or completeness of any recommendations and should make their own enquiries and obtain independent advice in relation to such matters

Macquarie Geotechnical assumes no responsibility and will not be liable to any other person or organisations for or in relation to any matter dealt with or conclusions expressed in the report, or for any loss or damage suffered by any other person or organisations arising from matters dealt with or conclusions expressed in the report.

Other limitations

Macquarie Geotechnical will not be liable to update or revise the report to take into account any events or emergent circumstances or facts occurring or becoming apparent after the date of the report.

Other Information

For further information reference should be made to "Guidelines for the Provision of Geotechnical Information in Construction Contracts" published by the Institution of Engineers Australia, 1987.

Geotechnical Explanatory Notes

Soil Description

In engineering terms soil includes every type of uncemented or partially cemented inorganic material found in the ground. In practice, if the material can be remoulded by hand in its field condition or in water it is described as a soil. The dominant soil constituent is given in capital letters, with secondary textures in lower case. The dominant feature is assessed from the Unified Soil Classification system and a soil symbol is used to define a soil layer as follows:

UNIFIED SOIL CLASSIFICATION

The appropriate symbols are selected on the result of visual examination, field tests and available laboratory tests, such as, sieve analysis, liquid limit and plasticity index.

USC Symbol	Description	
GW	Well graded gravel	
GP	Poorly graded gravel	
GM	Silty gravel	
GC	Clayey gravel	
SW	Well graded sand	
SP	Poorly graded sand	
SM	Silty sand	
SC	Clayey sand	
ML	Silt of low plasticity	
CL	Clay of low plasticity	
OL	Organic soil of low plasticity	
MH	Silt of high plasticity	
СН	Clay of high plasticity	
ОН	Organic soil of high plasticity	
Pt	Peaty Soil	

MOISTURE CONDITION

- Dry Cohesive soils are friable or powdery Cohesionless soil grains are free-running
- Moist Soil feels cool, darkened in colour Cohesive soils can be moulded Cohesionless soil grains tend to adhere
- Wet Cohesive soils usually weakened Free water forms on hands when handling

For cohesive soils the following codes may also be used:

MC>PL	Moisture Content greater than the Plastic
	Limit.
MC~PL	Moisture Content near the Plastic Limit.
MC <pl< td=""><td>Moisture Content less than the Plastic</td></pl<>	Moisture Content less than the Plastic
	Limit.

PLASTICITY

The potential for soil to undergo change in volume with moisture change is assessed from its degree of plasticity. The classification of the degree of plasticity in terms of the Liquid Limit (LL) is as follows:

Description of Plasticity	LL (%)
Low	<35
Medium	35 to 50
High	>50

COHESIVE SOILS – CONSISTENCY

The consistency of a cohesive soil is defined by descriptive terminology such as very soft, soft, firm, stiff, very stiff and hard. These terms are assessed by the shear strength of the soil as observed visually, by the pocket penetrometer values and by resistance to deformation to hand moulding.

A Pocket Penetrometer may be used in the field or the laboratory to provide approximate assessment of unconfined compressive strength of cohesive soils. The values are recorded in kPa, as follows:

Strength	Symbol	Pocket Penetrometer Reading (kPa)
Very	VS	< 25
Soft		
Soft	S	20 to 50
Firm	F	50 to 100
Stiff	St	100 to 200
Very	VSt	200 to 400
Stiff		
Hard	Н	> 400

COHESIONLESS SOILS - RELATIVE DENSITY

Relative density terms such as very loose, loose, medium, dense and very dense are used to describe silty and sandy material, and these are usually based on resistance to drilling penetration or the Standard Penetration Test (SPT) 'N' values. Other condition terms, such as friable, powdery or crumbly may also be used.

The Standard Penetration Test (SPT) is carried out in accordance with AS 1289, 6.3.1. For completed tests the number of blows required to drive the split spoon sampler 300 mm are recorded as the N value. For incomplete tests the number of blows and the penetration beyond the seating depth of 150 mm are recorded. If the 150 mm seating penetration is not achieved the number of blows to achieve the measured penetration is recorded. SPT correlations may be subject to corrections for overburden pressure and equipment type.

Term	Symbol	Density Index	N Value (blows/0.3 m)
Very Loose	VL	0 to 15	0 to 4
Loose	L	15 to 35	4 to 10
Medium Dense	MD	35 to 65	10 to 30
Dense	D	65 to 85	30 to 50
Very Dense	VD	>85	>50

COHESIONLESS SOILS PARTICLE SIZE DESCRIPTIVE TERMS

Name	Subdivision	Size
Boulders		>200 mm
Cobbles		63 mm to 200 mm
Gravel	coarse	19 mm to 63 mm
	medium	6.7 mm to 19 mm
	fine	2.36 mm to 6.7 mm
Sand	coarse	600 µm to 2.36 mm
	medium	210 μm to 600 μm
	fine	75 μm to 210 μm

Rock Description

The rock is described with strength and weathering symbols as shown below. Other features such as bedding and dip angle are given.

ROCK QUALITY

The fracture spacing is shown where applicable and the Rock Quality Designation (RQD) or Total Core Recovery (TCR) is given where:

RQD (%) = Sum of Axial lengths of core > 100mm long total length considered

TCR (%) = length of core recovered length of core run

ROCK STRENGTH

Rock strength is described using AS1726 and ISRM – Commission on Standardisation of Laboratory and Field Tests, "Suggested method of determining the Uniaxial Compressive Strength of Rock materials and the Point Load Index", as follows:

Term	Symbol	Point Load Index Is ₍₅₀₎ (MPa)
Very Low	VL	0.03 to 0.1
Low	L	0.1 to 0.3
Medium	Μ	0.3 to 1
High	Н	1 to 3
Very High	VH	3 to 10
Extremely High	EH	>10

ROCK MATERIAL WEATHERING

Rock weathering is described using the following abbreviation and definitions used in AS1726:

Abbreviation	Term		
RS	Residual soil		
XW	Extremely weathered		
DW	Distinctly weathered		
HW	Highly weathered		
MW	Moderately weathered		
SW	Slightly weathered		
FR	Fresh		

DEFECT SPACING/BEDDING THICKNESS

Measured at right angles to defects of same set or bedding.

Term	Defect Spacing	Bedding	
Extremely closely spaced	<6 mm	Thinly Laminated	
	6 to 20 mm	Laminated	
Very closely spaced	20 to 60 mm	Very Thin	
Closely spaced	0.06 to 0.2 m	Thin	
Moderately widely spaced	0.2 to 0.6 m	Medium	
Widely spaced	0.6 to 2 m	Thick	
Very widely spaced	>2 m	Very Thick	

DEFECT DESCRIPTION

Туре:	Description	
В	Bedding	
F	Fault	
С	Cleavage	
J	Joint	
S	Shear Zone	
D	Drill break	
Planarity/Roughness:		

Pla	nar	ity/	'Ro	ug	hn	ess	
-----	-----	------	-----	----	----	-----	--

Class	Description	
I	rough or irregular, stepped	
II	smooth, stepped	
III	slickensided, stepped	
IV	rough or irregular, undulating	
V	smooth, undulating	
VI	slickensided, undulating	
VII	rough or irregular, planar	
VIII	smooth, planar	
IX	slickensided, planar	

The inclination if defects are measured from perpendicular to the core axis.

WATER

Groundwater not observed: The observation of groundwater, whether present or not, was not possible due to drilling water, surface seepage or cave in of the borehole/test pit.

Groundwater not encountered: The borehole/test pit was dry soon after excavation, however groundwater could be present in less permeable strata. Inflow may have been observed had the borehole/test pit been left open for a longer period.

Graphic Symbols for Soils and Rocks

Typical symbols for soils and rocks are as follows. Combinations of these symbols may be used to indicated mixed materials such as clayey sand.

Engineering Classification of Shales and Sandstones in the Sydney Region – A Summary Guide

The Sydney Rock Class classification system is based on rock strength, defect spacing and allowable seams as set out below. All three factors must be satisfied.

CLASSIFICATION FOR SANDSTONE

Class	Uniaxial Compressive Strength (MPa)	Defect Spacing (mm)	Allowable Seams (%)	
I	>24	>600	<1.5	
Ш	>12	>600	<3	
Ш	>7	>200	<5	
IV	>2	>60	<10	
V	>1	N.A.	N.A.	

CLASSIFICATION FOR SHALE

Class	Uniaxial Compressive Strength (MPa)	Defect Spacing (mm)	Allowable Seams (%)	
I	>16	>600	<2	
Ш	>7	>200	<4	
III	>2	>60	<8	
IV	>1	>20	<25	
V	>1	N.A.	N.A.	

UNIAXIAL COMPRESSIVE STRENGTH (UCS)

For expedience in field/construction situations the uniaxial (unconfined) compressive strength of the rock is often inferred, or assessed using the point load strength index (Is_{50}) test (AS 4133.4.1 – 1993). For Sydney Basin sedimentary rocks the uniaxial compressive strength is typically about 20 x (Is_{50}) but the multiplier may range from about 10 to 30 depending on the rock type and characteristics. In the absence of UCS tests, the assigned Sydney Rock Class classification may therefore include rock strengths outside the nominated UCS range.

DEFECT SPACING

The terms relate to spacing of natural fractures in NMLC, NQ and HQ diamond drill cores and have the following definitions:

Defect Spacing (mm)	Terms Used to Describe Defect Spacing ¹		
>2000	Very widely spaced		
600 - 2000	Widely spaced		
200 - 600	Moderately spaced		
60 - 200	Closely spaced		
20 - 60	Very closely spaced		
<20	Extremely closely spaced		

¹After ISO/CD14689 and ISRM.

ALLOWABLE SEAMS

Seams include clay, fragmented, highly weathered or similar zones, usually sub-parallel to the loaded surface. The limits suggested in the tables relate to a defined zone of influence. For pad footings, the zone of influence is defined as 1.5 times the least footing dimension. For socketed footings, the zone includes the length of the socket plus a further depth equal to the width of the footing. For tunnel or excavation assessment purposes the defects are assessed over a length of core of similar characteristics.

Source: Based on Pells et al (1978), as revised by Pells et al (1998).

Pells, P.J.N, Mostyn, G. and Walker, B.F. - Foundations on Sandstone and Shale in the Sydney Region. Australian Geomechanics Journal, No 33 Part 3, December 1998.

Summary of Soil Logging Procedures

Coarse Material: grain size - colour - particle shape - secondary components - minor constituents - moisture condition - relative density - origin - additional observations. Fine Material: plasticity - colour - secondary components - minor constituents - moisture w.r.t. plasticity - consistency - origin - additional observations.

Fine - 0.21 to 0.075mm

	Guide to the Description, Identification and Classification of Soils								
	Major D	Divisio	ons	SYMBOL Typical Names					
> 2	:00mm	BOI	JLDERS						
60 to	200mm	CC	BBLES						
	s mu	WEL	50% action m	GW	Well-graded gr	ravels, gravel-sand mixtures, little or	no fines.		
Ð	s les .075r	GRAVEL	than 50 rse fracti 2.36mm	GP	Poorly graded	gravels and gravel-sand mixtures, lit	tle or no fines, un	iform gravels.	
N	dry mass less er that 0.075m	elly Is		GM	Silty gravels, g	ravel-sand-silt mixtures.			
LS LS	/ dry ter tl	Gravelly Soils	More of coan	GC	Clayey gravels	, gravel-sand-clay mixtures			
COARSE GRAINED SOIL S	More than 65% by dry mass less than 63mm is greater that 0.075mm	SO	50% action m	SW	Well-graded sa	ands, gravelly sands, little or no fines	S.		
AR	an 65 m is	SANDS	More than 50% of coarse fraction < 2.36mm	SP	Poorly graded	sands and gravelly sands; little or no	fines, uniform sa	ands.	
8	re th 63m	ls d	More than f coarse fr < 2.36m	SM	Silty sands, sar	nd-silt mixtures.			
	Mo than	Sandy Soils	of CC	SC Clayey sands, sand-clay mixtures.					
	s.		v it	ML	Inorganic silts	organic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts			
	y dry mm		Liquid Limit < 50%	CL	Inorganic clays	anic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays.			
FINE GRAINED SOILS	More than 35% by dry mass less than 60mm is less than 0.076mm		rigu Ligu	OL	Organic silts a	anic silts and organic silty clays of low plasticity.			
GR/ SOIL	าลก 3 ss th han (ŧ.,	MH	Inorganic silts,	micaceous or diatomaceous fine sar	ndy or silty soils,	elastic silts.	
Z Z	ore thes so lead		Liquid Limit > 50%	CH	Inorganic clays	s of high plasticity, fat clays.			
ш	M M		n ^	ОН	Organic clays of medium to high plasticity, organic silts.				
HIGH	LY ORG	ANIC	SOILS	Pt	Pt Peat and other highly organic soils.				
	40	40 'A-Line'			Gra	in sizes			
	30			сн		Gravel		Sand	
	0 20 Plastic Index %	c		î.		Coarse - 63 to 19mm	Coarse -	2.36 to 0.6mm	
	10 Lastic			or M		Medium - 19 to 6.7 mm	Medium -	0.6 to 0.21mm	

GEOL	.OGICAL	ORIGIN:-

Fill - artificial soils / deposits

20 30 40 50 60 70

Alluvial - soils deposited by the action of water Aeolian - soils deposited by the action of wind

Field Identification of Fine Grained Soils - Silt or Clay?

ML

Liquid Limit (%)

Dry Strength - Allow the soil to dry completely and then test its strength by breaking and crumbling between the fingers.

High dry strength - Clays; Very slight dry strength - Silts.

Toughness Test - the soil is rolled by hand into a thread about 3mm in diameter. The thread is then folded and re-rolled repeatedly until it has dried sufficiently to break into lumps. In this condition inorganic clays are fairly stiff and tough while inorganic silts produce a weak and often soft thread which may be difficult to form and readily breaks and crumbles.

Fine - 6.7 to 2.36mm

Topsoil - soils supporting plant life containing significant organic content

Residual - soils derived from insitu weathering of parent rock.

Colluvial - transported debris usually unsorted, loose and deposited

Dilatancy Test - Add sufficient water to the soil, held in the palm of the hand, to make it soft but not sticky. Shake horizontally, striking vigorously against the other hand several times. Dilatancy is indicated by the appearance of a shiny film on the surface of the soil. If the soil is then squeezed or pressed with the fingers, the surface becomes dull as the soil stiffens and eventually crumbles. These reactions are pronounced only for predominantly silt size material. Plastic clays give no reaction.

	Descriptive Terms for Material Portions						
COARSE GRAINED SOILS FINE GRAINED SOILS							
% Fines	% Fines Term/Modifier		% Coarse Term/Modifier				
≤ 5	Omit, or use "trace"	≤ 15 Omit, or use "trace"					
> 5, ≤ 12	"with clay/silt" as applicable	> 15, \leq 30 "with sand/gravel" as applicable					
> 12	Prefix soil as "silty/clayey"	> 30	Prefix as "sandy/gravelly"				

	Moisture Condition							
for non-cohe	sive soils:							
Dry -	runs freely through fingers.							
Moist-	does not run freely but no free water visible on soil surface.							
Wet -	free water visible on soil surface.							
for cohesive a	soils:							
MC> PL	Moisture content estimated to be greater than the plastic limit.							
MC~PL	Moisture content estimated to be approximately equal to the plastic limit.							
	The soil can be moulded							
MC< PL	Moisture content estimated to be less than the plastic limit. The soil is hard							
	and friable, or powdery.							
The plastic limit (I	PL) is defined as the moisture content (percentage) at which the soil crumbles when rolled into threads of 3mm dia.							
	Consistency - For Clays & Silts							

		Consistency - For Clays & Silts	
Description	UCS(kPa)	Field guide to consistency	
Very soft	< 25	Exudes between the fingers when squeezed in hand	
Soft	25 - 50	Can be moulded by light finger pressure	
Firm	50 - 100	Can be moulded by strong finger pressure	
Stiff	100 - 200	Cannot be moulded by fingers. Can be indented by thumb.	
Very stiff	200 - 400	Can be indented by thumb nail	
Hard	> 400	Can be indented with difficulty by thumb nail	
Friable	-	Crumbles or powders when scraped by thumbnail	

Relative Density for Gravels and Sands								
Description SPT "N" Value Density Index (ID) Range %								
Very loose	0 - 4	< 15						
Loose	4 - 10	15 - 35						
Medium dense	10 - 30	35 - 65						
Dense	30 - 50	65 - 85						
Very dense	> 50	> 85						

Summary of Rock Logging Procedures

Description order: constituents - rock name - grain size - colour - weathering - strength - minor constituents - additional observations.

· minor constituents - moisture w.r.t. plasticity - consistency - origin - additional observations.

	Definition - Sedimentary Rock
Conglomerate	more than 50% of the rock consists of gravel (>2mm) sized fragments
Sandstone	more than 50% of the rock consists of sand (0.06 to 2mm) sized grains
Siltstone	more than 50% of the rock consists of silt sized granular particles and the rock is not laminated
Claystone	more than 50% of the rock consists of clay or mica material and the rock is not laminated
Shale	more than 50% of the rock consists of clay or silt sized particles and the rock is laminated

		Weathering
Residual	RS	Soil developed on extremely weathered rock; the mass structure and
Soil		substance fabric are no longer evident; there is a change in volume
		but the soil has not significantly transported.
Extremely	EW	Rock is weathered to such an extent that it has 'soil' properties; ie. it either disintegrates or
Weathered		can be remoulded, in water.
Distinctly	DW	Highly Weathered (HW) - Rock is wholly discoloured and rock strength is significantly
Weathered		changed by weathering. Some primary minerals have weathered to clay minerals Moderately Weathered (MW) - The whole of the rock is discoloured, usually by iron staining and bleaching. Shows little or no change in rock strength.
Slightly	SW	Rock is slightly discoloured but shows little or no change of strength from fresh rock.
Weathered		
Fresh	FR	Rock shows no sign of decomposition or staining.

	Stra	tification		
thinly laminated	<6mm	medium bedded	0.2 - 0.6m	
laminated	6 - 20mm	thickly bedded	0.6 - 2m	
very thinly bedded	20 - 60mm	very thickly bedded	>2m	
thinly bedded	60mm - 0.2m			

			Discontinuities		
order of de	escription: de	epth - type - orientati	on - spacing - roughness / pla	narity - thick	ness - coating
	Туре	Class	Roughness/Planarity	Class	Roughness/Planarity
В	Bedding	I	rough or irregular, stepped	VI	slickensided, undulating
F	Fault	II	smooth, stepped	VII	rough or irregular, planar
С	Cleavage	III	slickensided, stepped	VIII	smooth, planar
J	Joint	IV	rough or irregular, undulating	IX	slickensided, planar
S	Shear Zone	V	smooth, undulating		
D	Drill break				

			Rock Strength
Term		IS (50)	Field Guide
Very low	VL	0.03	Material crumbles under firm blows with sharp end of pick; can be peeled with knive. Pieces up to 30mm thick can be broken by finger pressure.
Low	L	0.3	A piece of core 150 mm long x 50 mm dia. may be broken by hand and easily scored with a knife. Sharp edges of core may be friable and break during handling.
Medium	М	1	A piece of core 150 mm long x 50 mm dia. can be broken by hand with considerable difficulty. Readily scored with knife.
High	Н	3	A piece of core 150 mm long x 50 mm dia. core cannot be broken by unaided hands, can be slightly scratched or scored with knife.
Very High	VH	10	A piece of core 150 mm long x 50 mm dia. May be broken readily with hand held hammer. Cannot be scratched with pen knife.
Extremely High * - rock strength de	EH	-	A piece of core 150 mm long x 50 mm dia. Is difficult to break with hand held hammer. Rings when struck with a hammer.
-			Degree of fracturing
fragmented			e is comprised primarily of fragments of length less than 20mm, and of width less than the core diameter
highly		Core ler	ngths are generally less than 20mm - 40mm
fractured		with occ	casional fragments.
fractured			ngths are mainly 30mm - 100mm with occasional shorter ger lengths
slightly		Core ler	ngths are generally 300mm - 1000mm with occasional longer sections
fractured		and sho	rter sections of 100mm 300mm.

unbroken The core does not contain any fracture. # - spacing of all types of natural fractures, but not artificial breaks, in cored bores.

The fracture spacing is shown where applicable and the Rock Quality Designation isgiven by:RQD (%) = sum of unbroken core pieces 100 mm or longer

Appendix B – Site Plan

148.219	148.220	148.221	148.222	148.223	148.224		148.225		148.226	
MACQUARIE		Client: Phillip Yates Family Hole	0	50	100	150	200			
GEOTECH		Project: Narromine Facility Upg	grade				Metres	- Scale 1:2	2000	
GEOTE		Location: Narromine, NSW						al Scale 1 : 1		
3 Watt Drive, Bathurst NSW 2795 P: 02 6332 2011 F: 02 6334 4213 E: n	nacgeo@macgeo.com.au		Checked: M. Williams	17-05-2024		Co-ordir	nate Referen	ice System - E	EPSG: 4326 V	NGS: 84

Macquarie Geotechnical Ltd
Geotechnical Investigation Locality Map

Drawing Number: G24049 - Rev(0)

Appendix C – Borehole Logs

Borehole No.

EBH01

Page 1 of 1

Client: Project Na Hole Loca Hole Posit Drill Model Hole Diam	ation: ition: el and Mo neter: Drilling I Sa T Re D 0.10. ES 0.30.	Narromi Narromi 615040	ine Fa ine NS .0 m E D4TA 115 m on RL (m)	6430545 PG	ade	ty Ltd GDA2020 / Zone 55 Inclination: -90° Bearing: Soil Descri Material Description Fraction, Colour, Structure, Beddir Plasticity, Sensitivity, Additional		leted: d By: ced By rface: n:	08 D. Y. P. No sur AHD	L. vey O	perat	or: A.Moore Observations
Hole Loca Hole Posit Drill Model Hole Diam	ation: ition: el and Mo neter: Drilling I Sa T Re D 0.10. ES 0.30.	Narromi 615040. Dunting: Information amples Fests emarks	ine NS .0 m E D4TA 115 m on RL (m)	SW 6430545 PG nm Depth (m) Depth	.0 m N (Inclination: -90° Bearing: Soil Descri Material Description Fraction, Colour, Structure, Beddir	Logge Check RL Su Datum	d By: red By rface: n:	D. P. No sui AHD	O. L. Vey O	perat	
Drill Model Hole Diam	Drilling I Drilling I Sa T Re D 0.10. ES 0.30.	Information Information Tests Evenarks	D4TA 115 m on RL (m)	PG nm Depth (m)		Inclination: -90° Bearing: Soil Descri Material Description Fraction, Colour, Structure, Beddir	RL Su Datum	rface:	No sui AHD	vey O Pock	ket	
Hole Diam	Drilling I Sa T Re D 0.10. ES 0.30.	Information amples Tests emarks	115 m	Depthi (m) Depthic Log	Classification Symbol	Bearing: Soil Description Material Description Fraction, Colour, Structure, Beddir	Datum	cy ensity	AHD	Pock	ket	
tion	Drilling I Sa T Re D 0.10. ES 0.30.	Information amples Tests emarks	ON RL (m)	(m) Graphic Log	Classification Symbol	Soil Description Material Description Fraction, Colour, Structure, Beddir	otion	cy ensity		Pock	ket	
tion	Sa T Re D 0.10. ES 0.30.	amples Fests emarks	RL (m)	()	Classification Symbol	Material Description Fraction, Colour, Structure, Beddir		ency Density	۵			Observations
Method Penetration Support	E 100 0.100 ■ 0.100	D-0.50 m		()	Classification Symbol	Fraction, Colour, Structure, Beddin	g, Jre	ancy Density	۵.			
	0.10 ES 0.30			0.10m			Moisture Condition	Consistency Relative Density	Blows/100mm 5 10 15 20	Penetro UC: (kPa 00 00 00	S a)	Structure and Additional Observation
	0.10 ES 0.30			L		FILL GRAVEL with sand: fine to coars		NA				FILL
				0.5	<u></u>	sand fine to coarse grained. Sandy CLAY: medium plasticity, brow red and orange; sand fine to coarse grained.	/	VSt				ALLUVIAL SOIL
	D 0.50- O N O V O V O V O V O V O V O V O V O V)-1.00 m			└ <u>┎</u> ╵ _┍ ╵┥┥╵╎╻╵		w <p< td=""><td>VSt</td><td></td><td></td><td></td><td></td></p<>	VSt				
	D 1.00)-1.50 m	-		╷╷╴╷╷╷╷╷			н				
				1,50m	<u>-</u>	Hole Terminated at 1.50 m						
<u>Metho</u> AS - Auger RR - Rock F WB- Washb	Roller bore	N	::]] Co	to	ed (hatchi	Date) U - Undisturbed Sam D - Disturbed Sample SPT - Standard Penetra Loss ete Loss Classification Sy	ple ation Test		<u>Moisture C</u> D - [M - M W - V <u>Plastic I</u> < P = P < P	Dry Aoist Vet L <i>imit</i>	<u> </u>	Consistency/Relative Densi Consistency/Relative Densi VS - Very Soft F - Firm VSt - Very Stiff H - Hard VL - Very Loose L - Loose MD - Medium Dense D - Dense VD - Very Dense

EBH02

F	Client: Project Iole L	t Na		Narro	mir	ne Fa	cility l		ings P de	ty Ltd	Co	omme omple gged			6/04 6/04 0.			
ŀ	lole P	ositi	on:	61508	34.0) m E	6430	528.0	mN	GDA2020 / Zone 55	Ch	ecke	ed By	: P.I	L.			
	Drill M Iole D			d Mounting:		D4TA 115 m				Inclination: -90° Bearing:		. Sur atum:	face:	No sur AHD	vey)pera	tor: A.Moore
		I	Drill	ing Informa	atio	n				Soil Descrip	otion							Observations
Method	Penetration	Support	Water	Samples Tests Remarks	Recovery	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description Fraction, Colour, Structure, Bedding Plasticity, Sensitivity, Additional] ,	Moisture Condition	Consistency Relative Density	L DQ Blows/100mm 5 10 15 20	Per	UC (kF	omete S	Structure and Additional Observation
AD/T			Not Observed	D 0.10-0.50 m ES 0.30-0.50 m D 0.50-1.00 m			0.10m 		CI-CH	FILL Silty CLAY with gravel with sand: to medium plasticity, pale yellow; grave fine to coarse, rounded to sub-rounded sand fine to coarse grained. Silty CLAY trace sand: medium to high plasticity, brown, red and orange; sand fine grained.	low el / 1; / / I	NA w <pl< th=""><th>NA VSt</th><th></th><th>10</th><th>20</th><th>4</th><th>FILL ALTUVIAT SOIL</th></pl<>	NA VSt		10	20	4	FILL ALTUVIAT SOIL
							1 <u>sen</u> - - 2.0 — - - 2.5 — - - - - - - - - - - - - - - - - - - -			Hole Terminated at 1.50 m Criteria Satisfied								
R	IS - Au RR - Ro VB- W	Method Penetration S - Auger Screwing R - Rock Roller No resistance ranging to refusal B - Washbore Caraphic Loo indicates Support C - Casing Core reduction						∆ ⊲ ⊲ g/Core	Loss	(Date) U - Undisturbed Samp D - Disturbed Sample SPT - Standard Penetrat Loss ete Loss Classification Syn	ble tion T			<u>Moisture Ca</u> D - E M - M W - V W - V Plastic I < P < P	Dry Moist Vet L <i>imi</i>	t	! !	Consistency/Relative Densi VS - Very Soft S - Soft F - Firm VSt - Very Stiff H - Hard VL - Very Loose L - Loose MD - Medium Dense D - Dense VD - Very Dense

EBH03

En	ngin	ee	rin	g Log -	B	ore	hole	;			Pr	oject	No.:	Gź	240	49		
	Client:		10 -				-		ings P	ty Ltd		omme				/20		
	Projec Hole L						icility l SW	Upgra	de			omple oggeo		04 D.		/20	24	
	lole F)529.0	mN	GDA2020 / Zone 55		necke	-					
D	Drill M	ode	lan	d Mounting:	: [D4TA	PG			Inclination: -90°	RI	Sur	face:	No sur	rve	y		
F	lole D	Diam	ietei	-		115 n	nm			Bearing:	Da	atum		AHD		(Oper	ator: A.Moore
		1	Dril	ling Informa	atio	n				Soil Descrip	tion	1						Observations
Method	Penetration	Support	Water	Samples Tests Remarks	Recovery	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description Fraction, Colour, Structure, Bedding Plasticity, Sensitivity, Additional	Ι,	Moisture Condition	Consistency Relative Density	Blows/100mm 5 10 15 20		netr U((kF	cket omete CS Pa)	Additional Observation
				D			0.10m	<u>لينا</u>	NA CI-CH	FILL Silty CLAY with gravel with sand: I to medium plasticity, pale yellow, red;		NA			-		940	FILL ALLUVIAL SOIL
				0.10-0.50 m ES 0.30-0.50 m	_		-		CI-CH	gravel fine to coarse, sand fine to coars grained	/		VSt					
-			Not Observed	D 0.50-1.00 m	_		0 <u>50m</u> -0. 5 -	× × × × × ×	CI-CH	grained.								
אמ			Not 0	_			- - 1.0	× × × × × × × × ×				w <pl< td=""><td>— — Н</td><td></td><td></td><td></td><td></td><td></td></pl<>	— — Н					
				D 1.00-1.50 m			-						VSt					
							- 1,50m 1.5			Hole Terminated at 1.50 m								
R	IS - Ai RR - Ri VB- W	očk F /asht	Scre Rolle pore	wing 🖂	No	tration o resisi anging refusa Grap	tance	$\land \lor \land$		Date) U - Undisturbed Samp D - Disturbed Sample SPT - Standard Penetrat	ole tion T			<u>Moisture Co</u> D - E M - N W - V	Dry Mois Wet	t	<u>n</u>	Consistency/Relative Dens VS - Very Soft S - Soft F - Firm VSt - Very Stiff H - Hard VL - Very Loose L - Loose MD - Medium Dense
		Support Core re C - Casing indicate Core loss Core loss								ng <u>and Soil Descripti</u> Based on Unified 3 Classification Syst	<i>ions</i> Soil			< P = P < P	L			D - Dense D - Dense VD - Very Dense

EBH04

Eng	Jin	ee	rin	g Log -	В	ore	hole)			F	Project	No.:	G	240	49		
Clie Pro		t Na	me:				-amily Icility l		ings Pi de	ty Ltd		Comm			1/04 1/04			
		ocat ositi		Narro	omii	ne NS	SW			GDA2020 / Zone 55		Logged Checke			.O. I			
				d Mounting:		D4TA				Inclination: -90°		RL Sur	-			/		
Hol	le D					115 n	nm	_		Bearing:		Datum	:	AHD		C	Opera	ator: A.Moore
			Drill	ing Informa	atio	on				Soil Desc	riptio	on I	~					Observations
Method	Penetration	Support	Water	Samples Tests Remarks	Recovery	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description Fraction, Colour, Structure, Bed Plasticity, Sensitivity, Additior	ding, Ial	Moisture Condition	Consistency Relative Density	Blows/100mm 5 10 15 20		netro UC (kF		er Structure and Additional Observation
ADIT			ed	D 0.10-0.50 m ES 0.30-0.50 m D 0.50-1.00 m D 1.00-1.50 m			0.10m - - - 0.5 - - - 1.0 - - - - - - - - - - - - - - - - - - -		NA CI-CH	FILL Silty CLAY with gravel with sa to medium plasticity, pale yellow; g fine to coarse sub-rounded; sand fi coarse grained. Silty CLAY trace sand: medium to h plasticity, red and orange; sand fine coarse grained.	ravel ine to 	/ <u>NA</u>	NA VSt					FILL
							1 <u>490</u> - - 2.0 — - - 2.5 — - - - 3.0 — - - - - - - - - - - - - - - - - - - -			Hole Terminated at 1.50 m Criteria Satisfied								
AS RR WB	Method AS - Auger Screwing RR - Rock Roller VB- Washbore Support						tance to al	∆ ⊲ ⊲ g/Core	Loss	Date) U - Undisturbed S D - Disturbed San SPT - Standard Pene Loss ete Loss Classification	ample iple etration	Test		<u>Moisture C</u> D - I M - I W - V Plastic	Dry Mois Wet Lim i	t	<u>1</u>	Consistency/Relative Densi VS - Very Soft S - Soft F - Firm VSt - Very Stiff H - Hard VL - Very Loose L - Loose MD - Medium Dense
	C - Casing						dicates	mater	ial)	ng <u>and Soil Desc</u> Based on Unif Classification	ied Soi	il		= P < P	Ľ			D - Dense VD - Very Dense

EBH05

	igin	ee	rin	g Log -	В	ore	noie					тојест	No.:	G2	2404	49		
	Client: Project		me.				amily		ings P de	ty Ltd		omme omple			/04			
	lole L			Narro	omir	ne NS	SW					oggeo		D.	О.	20	27	
F	lole P	osit	ion:	6153	75.0	0 m E	6430	480.0) m N (GDA2020 / Zone 55	С	hecke	ed By	: P.I	L.			
	orill M Iole D			d Mounting		D4TA 115 m				Inclination: -90° Bearing:		L Sur		No sur AHD	vey		Juora	tor: A.Moore
-														And				
		-	Driii	ing Inform	atio	on				Soil Descrip	סנוסו	n 			-			Observations
Method	Penetration	Support	Water	Samples Tests Remarks	Recovery	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description Fraction, Colour, Structure, Bedding Plasticity, Sensitivity, Additional	g,	Moisture Condition	Consistency Relative Density	B lows/100mm 5 10 15 20	Per	UC (kF	omete SS	r Structure and Additional Observatior
AD/T			Not Observed	D 0.10-0.50 m ES 0.30-0.50 m D 0.50-1.00 m D 1.00-1.50 m			0.1 <u>0m</u> _ - - 0.5 — - - 1.0 — - - - - - - - - - - - - - - - - - - -		CI-CH	FILL Silty CLAY with gravel with sand: to medium plasticity, pale yellow; grave fine to coarse sub-rounded; sand fine i coarse grained.	el to 	NA / /	NA VSt					FILL ALTUVIAL SOIL
							1 <u>+60</u> - - - 2.0 — - - - 2.5 — - - - - - - - - - - - - - - - - - - -	×		Hole Terminated at 1.50 m Criteria Satisfied								
A R V	.S - Au R - Ra VB- W	Method Penetration S - Auger Screwing No resistance R - Rock Roller ranging to B- Washbore refusal Support Core los C - Casing Core los						D	<u>Loss</u> (hatchi	Date) U - Undisturbed Samp D - Disturbed Sample SPT - Standard Penetra Loss ete Loss Classification Syn	ple tion <u>mbol</u>	<u>ls</u>		<u>Moisture Ce</u> D - E M - M W - V W - V <u>Plastic I</u> = P = P < P	Dry Moist Vet L L	t	! !	Consistency/Relative Dens VS - Very Soft S - Soft F - Firm VSt - Very Stiff H - Hard VL - Very Loose L - Loose MD - Medium Dense D - Dense VD - Very Dense

EBH06

		511	ng L	_og -				•				,	No.:	G2				
Clien		0	<u>.</u> .	Phillip			-		-	ty Ltd		omme			/04/			
Proje Hole				Narro Narro			-	Jpgra	ae			omple ogged		04 D.1	/04/ O.	/20	24	
Hole								542.0	mN	GDA2020 / Zone 55		necke	-					
Drill I	Mod	el a	nd Mo	ounting:	[D4TA	PG			Inclination: -90°	RI	Sur	face:	No sur	vey	,		
Hole	Dia	met	er:	_	1	l 15 m	۱m			Bearing:	Da	atum:		AHD		C	pera	ator: A.Moore
		Dr	illing	Informa	atio	n				Soil Descrip	otion							Observations
Method Penetration	Support	Water		amples Tests emarks	Recovery	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description Fraction, Colour, Structure, Beddin Plasticity, Sensitivity, Additional	g,	Moisture Condition	Consistency Relative Density	Blows/100mm 5 10 15 20	Per	UC (kF	omete S	r Structure and Additional Observation
)-0.50 m			0.10m _ - - 0.5 _		CI-CH	FILL Silty CLAY with gravel with sand: to medium plasticity, pale yellow; grave fine to coarse sub-rounded; sand fine coarse grained. Silty CLAY trace sand: medium to high plasticity, red and orange; sand fine to coarse grained.	el to / n	NA	NA				4	FILL ALLUVIAL SOIL — — — —
		Not Ohserved	D)-1.00 m			- - - 1.0-					w <pl< td=""><td>VSt</td><td></td><td></td><td></td><td></td><td></td></pl<>	VSt					
			ES)-1.50 m)-1.50 m			- - 1,50m											
				Pe		tration			Wate	Hole Terminated at 1.50 m Criteria Satisfied	ests			Moisture Co	ondi	itior		Consistency/Relative Dens
AS - RR - WB-	S - Auger Screwing R - Rock Roller VB- Washbore Support C - Casing							□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	Level (Inflow Partial Compl <u>Loss</u> (hatchi	Date) U - Undisturbed Sam D - Disturbed Sample SPT - Standard Penetra Loss ete Loss Classification Svr	ple ition 1			<u>Moisture Ca</u> D - E M - M W - V Plastic I < P = P < P	Dry Noist Vet L <i>imi</i>	t	I	Consistency/Relative Dens VS - Very Soft F - Firm VSt - Very Stiff H - Hard VL - Very Loose L - Loose MD - Medium Dense D - Dense VD - Very Dense

EBH07

Er	ngir	nee	erir	ng Lo	og -	Bc	oreł	hole	•			P	roject	No.:	G2	2404	49		
	Client Projec		ame		Phillip Narroi			-		ings P de	ty Ltd		comme comple			/04/ /04/			
	Hole L			n:	Narro	min	e NS	SW					oggeo	-	D.				
	Hole F)575.0) m N (GDA2020 / Zone 55		hecke						
	Jrill M Hole [nd Mou er	nting:		94TA 15 m				Inclination: -90° Bearing:		RL Sur atum:		No sur AHD	vey		perat	tor: A.Moore
				lling In	forma						Soil Descri				7418				Observations
		-									Join Descri			2					
Method	Penetration	Support	Water	Sam Te: Rem	ples sts arks		RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description Fraction, Colour, Structure, Beddir Plasticity, Sensitivity, Additional	ıg,	Moisture Condition	Consistency Relative Density	B lows/100mm 5 10 15 20	Per	Pock netro UC: (kPa 000 000	meter S a)	Structure and Additional Observation
				D 0.10-0	.50 m		-	0.10m - - -		CI-CH	FILL Sitty CLAY with gravel with sand to medium plasticity, pale yellow; grav fine to coarse sub-rounded; sand fine coarse grained. Sitty CLAY trace sand: medium to hig plasticity, red and orange; sand fine to coarse grained.	vel e to jh	<u>NA</u>	NA					FILL ALLUVIAL SOIL
			Not Observed	D 0.50-1 ES 0.50-0				0.5			toarse granieu.		w <pl< td=""><td>VSt</td><td></td><td></td><td></td><td></td><td></td></pl<>	VSt					
				D 1.00-1	.50 m			1.0						VSt to H					
											Hole Terminated at 1.50 m Criteria Satisfied								
ARV	AS - A RR - F NB- V S	L Meth Auger Rock	Scr Rolle bore		Pe	No rar		ance to al <u>hic Loc</u> ore rec	D √ √ √ ■ g/Core overed a mater	<u>Loss</u> (hatchi	Date) U - Undisturbed Sam D - Disturbed Sampl SPT - Standard Penetra toss ete Loss Classification Sy	nple le ation <u>mbo</u> otion: d Soil	<u>ls</u>		Moisture Ca D - E M - N W - V Plastic I < P = P < P	Dry Moist Vet L <i>imit</i> L		<u> </u>	Consistency/Relative Dens VS - Very Soft S - Soft F - Firm VSt - Very Stiff H - Hard VL - Very Loose L - Loose MD Medium Dense D - Dense VD - Very Dense

EBH08

Er	igin	ee	rin	g Log -	B	ore	hole	;			Pı	roject	No.:	G2	2404	49		
	Client: Project		mai				=amily icility l		ings P de	ty Ltd		omme omple			/04/			
	lole L						-	opgra	ue			ompie		04 D.		20.	24	
ŀ	lole P	osit	ion:	6152	47.0	0 m E	6430)592.0) m N (GDA2020 / Zone 55		hecke	-	: P.I	L.			
				d Mounting		D4TA				Inclination: -90°		L Sur			vey			
+	lole D	liam	leter			115 n	nm			Bearing:	Da	atum:		AHD		C)perat	or: A.Moore
			Drill	ling Inform	atio	n				Soil Descrip	tion	י 						Observations
Method	Penetration	Support	Water	Samples Tests Remarks	Recovery	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description Fraction, Colour, Structure, Bedding Plasticity, Sensitivity, Additional] ,	Moisture Condition	Consistency Relative Density	Blows/100mm 5 10 15 20	Per	UC (kP	ometer S	Structure and Additional Observatior
AU/I			Not Observed	D 0.10-0.50 m ES 0.30-0.50 m D 0.50-1.00 m D 1.00-1.50 m			0.10m - - - 0.5 - - - - - - - - - - - - - - - - - - -		CI-CH	FILL Silty CLAY with gravel with sand: to medium plasticity, pale yellow and brown; gravel fine to coarse sub-round sand fine to coarse grained.	led;	NA / w <pl< td=""><td>NA VSt</td><td></td><td></td><td></td><td></td><td>FILL</td></pl<>	NA VSt					FILL
							- - - - - - - 2.0- - - - - - - - - - - - - - - - - - -			Hole Terminated at 1.50 m Criteria Satisfied			VSt to H					
ARV	.S - Au R - Ro VB- W	Method Penetration S - Auger Screwing R - Rock Roller B - Washbore Graphic Log Support							Loss	Date) U - Undisturbed Samp D - Disturbed Sample SPT - Standard Penetrat Loss ete Loss Classification Sym	ble tion T	<u>s</u>		<u>Moisture Ca</u> D - E M - N W - V <u>Plastic I</u> < P	Dry <i>N</i> oist Vet		<u> </u>	VS - Very Soft S - Soft F - Firm VSt - Very Stiff H - Hard VSt - Very Stiff H - Hard VL - Very Loose L - Loose MD - Medium Dense
		C - Casing								ng <u>and Soil Descript</u> Based on Unified Classification Syst	Soil			= P < P	L			D - Dense VD - Very Dense

EBH09

	_			ng Loạ									No.:					
	Client Projec		ame				Family acility		ings P de	ty Ltd		Comme Comple			/04/ /04/			
F	- Hole L	_002	tior	n: N	arrom	ine N	SW				L	.oggec	l By:	D.	0.			
	Hole F			-				0604.0) m N (GDA2020 / Zone 55		Checke						
	Drill M Hole [nd Mount er	ing:	D4TA 115 r				Inclination: -90° Bearing:		RL Sur Datum:		No sur AHD	rvey)pera	tor: A.Moore
				lling Info	ormati					Soil Desci								Observations
													ity					
Method	Penetration	Support	Water	Sampl Test Rema		RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description Fraction, Colour, Structure, Bedd Plasticity, Sensitivity, Additiona	ling, al	Moisture Condition	Consistency Relative Density	Blows/100mm 5 10 15 20	Per	UC (kP	meter S	Structure and Additional Observatior
AD/T			Not Observed	D 0.10-0.5 ES 0.30-0.5 D 0.50-1.0	0 m	-	0.10m - - - 0.5 - - - -	× × × × × × × ×	CI-CH	FILL Sitty CLAY with gravel: low to medium plasticity, pale yellow; grave to coarse sub-rounded. Sitty CLAY trace sand: medium to h plasticity, red and orange; sand fine coarse grained.	 igh	/NA / w <pl< td=""><td>NA VSt</td><td></td><td></td><td></td><td></td><td>FILL ALTUVIAT SOIL</td></pl<>	NA VSt					FILL ALTUVIAT SOIL
				D 1.00-1.5	0 m		1.0			Hole Terminated at 1.50 m								
							2.0— 2.5— 											
		 				etratio. Io resis			Wat		Tests			Moisture Co				Consistency/Relative Dens
A R V	vb- v <u>s</u>	Auger Screwing Rock Roller B- Washbore C - Casing C - Casing							Loss (hatch	SPT - Standard Penel Loss ete Loss Classification S	ple tration Symbo riptions	<u>ls</u> s		D - [M - M W - V Plastic [< P = P < P	Vet <u>Limit</u> L			VS - Very Soft S - Soft F - Firm VSt - Very Stiff H - Hard VL - Very Loose L - Loose MD - Medium Dense D - Dense VD - Very Dense

EBH10

	-			g Log -								Project			2404			
	Client: Projec		ime:						ings P de	ty Ltd		Comme Comple			1/04, 1/04,			
F	lole L	oca	tion	Narro	miı	ne NS	SW				L	oggeo	l By:	D.	.0.			
	lole P							637.0	m N (GDA2020 / Zone 55		Checke						
	Drill M Hole D			d Mounting: 		D4TA 115 n				Inclination: -90° Bearing:		RL Sur Datum:		No su AHD	rvey		nerat	tor: A.Moore
										-								
		-		ling Informa		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				Soil Descri	<i>puo</i>							Observations
Method	Penetration	Support	Water	Samples Tests Remarks	Recovery	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description Fraction, Colour, Structure, Beddi Plasticity, Sensitivity, Additional	ng, I	Moisture Condition	Consistency Relative Density	Blows/100mm 5 10 15 20	Per	UC (kP	ometer S	Structure and Additional Observatior
			rved	D 0.10-0.50 m ES 0.30-0.50 m D 0.50-1.00 m			0.10m _ - - - 0.50m _		CI-CH CI-CH	TOPSOIL Silty CLAY with sand: med plasticity, dark brown; sand fine to co grained. Silty CLAY trace sand: medium to hig plasticity, dark brown; sand fine to co grained. Silty CLAY trace sand: medium to hig blockicity and sand sand sand sand sand sand sand	parse gh parse	./	NA S to F					TOPSOIL
AU/I			Not Observed	D 1.00-1.50 m			- - - 1.0 -			plasticity, red and orange; sand fine t coarse grained.	Ö	w <pl< td=""><td>St to VSt</td><td></td><td></td><td></td><td></td><td></td></pl<>	St to VSt					
							- <u>1,50m</u> - - - -			Hole Terminated at 1.50 m Criteria Satisfied			VSt to H					
							2.0— - - 2.5— -											
							- - 3.0- - -											
		lethc			ene	tration	3.5— - - - 2		Wate		Tests			 				Consistency/Relative Dens
A R V	AS - Au RR - Ra VB- W	uger ock F	Scre Rollei bore		No	o resis anging refusa	tance i to al <u>hic Lo</u> g	∆ ⊲ ⊲ g/Core	Level (Inflow Partial Compl	Date) U - Undisturbed Sar D - Disturbed Samp SPT - Standard Penetr Loss ete Loss Classification Sy	mple le ration	Test		D - [M -] W - \ <i>Plastic</i> < P	Dry Moist Wet <u>Limi</u>	t	-	VS - Very Soft S - Soft F - Firm VSt - Very Stiff H - Hard VL - Very Loose L - Loose MD - Medium Dense
		- Ca				i 🚽 🗍 in	dicates ore los	materi		ng <u>and Soil Descri</u> Based on Unifie Classification Sy	d Soi	il		= P < P	۲L ۲L			D - Dense VD - Very Dense

SBH02

Client Projec Hole L Hole F	ct Na ₋oca	tion:	Narro	omii omii	ne Fa ne NS	cility l SW	Jpgra		ty Ltd GDA2020 / Zone 55	Comr Comp Logg Chec	ed By:	09 D	9/04/20: 9/04/20: .O. L.		
Drill M Hole [d Mounting:		D4TA 115 n				Inclination: -90° Bearing:	RL S Datur		: No su AHD	•	Inerat	or: A.Moore
			ing Informa						Soil Descrip			7410			Observations
Method Penetration	Support	Water	Samples Tests Remarks	Recovery	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description Fraction, Colour, Structure, Bedding Plasticity, Sensitivity, Additional	Moisture	Condition Consistency Relative Density	Blows/100mm 5 10 15 20	Poc Penetro UC (kF	ometer CS Pa)	Structure and Additional Observations
		-	D 0.18-0.50 m D 0.50-1.00 m			0.18m - - - - - - -		CI	FILL Sandy GRAVEL: fine to coarse grained, sub-angular to angular, grey; sand fine to coarse grained. Sandy CLAY: medium plasticity, red an orange; sand fine to coarse grained.	Id N/	<u>NA</u>			4	FILL ALLUVIAL SOIL
		ed	SPT 1.50-1.95 m 7,10,13 N=23 1.95 m D 2.00-3.00 m			2									X 1.50: HP Samp >600 kPa
		Not Observed	SPT 3.00-3.45 m 8,9,14 N=23 3.45 m D 3.50-4.50 m			3		CI-CH	Silty CLAY trace sand: medium to high plasticity, red, orange and pale yellow; sand fine to coarse grained.		PL VSt				¥3.00: HP Samp ≻600 kPa
			SPT 4.50-4.95 m 7,11,14 N=25 4.95 m D 5.00-6.00 m			4.50m - - - 5 - - - -		CI-CH	Silty trace sand: medium to high plastic pale yellow and orange; sand fine to coarse grained.					×	
			SPT 6.00-6.45 m 7,11,14 N=25 6.45 m			6			Hole Terminated at 6.45 m Criteria Satisfied						6.00: HP Samp =580 kPa
	Metho Luger Rock F	Scre Rollei		No	tration o resis anging refus	tance to	$\nabla \nabla$	<u>Wate</u> Level (Inflow Partial Comple	Date) U - Undisturbed Samp D - Disturbed Sample SPT - Standard Penetrat	le		<u>Moisture C</u> D - I M - I W - V	Dry Moist Wet	<u> </u>	Consistency/Relative Densi VS - Very Soft S - Soft F - Firm VSt - Very Stiff H - Hard VL - Very Loose
	uppo - Ca					hic Log ore rec dicates ore loss	overed materi	(hatchi	ng <u>Classification Sym</u> and Soil Descripti Based on Unified Classification Syst	i ons Soil		< P = P < P	۲ <u>۲</u>		L - Loose MD - Medium Dense D - Dense VD - Very Dense

SBH02

Page 2 of 3

Engineering	Log - Borehole		Project No.:	G24049	
Client: Project Name: Hole Location: Hole Position:	Phillip Yates Family Holdings Narromine Facility Upgrade Narromine NSW 614968.0 m E 6430573.0 m N		Commenced: Completed: Logged By: Checked By:	09/04/2024 09/04/2024 D.O. P.L.	
Drill Model and M Hole Diameter:	ounting: D4TAPG 115 mm	Inclination: -90° Bearing:	RL Surface: Datum:	No survey AHD Operate	or: A.Moore

SBH02 Depth Range: 1.50 - 1.95 m

SBH02

Page 3 of 3

Engineering	Log - Borehole		Project No.:	G24049	
Client: Project Name: Hole Location: Hole Position:	Phillip Yates Family Holdings Narromine Facility Upgrade Narromine NSW 614968.0 m E 6430573.0 m N		Commenced: Completed: Logged By: Checked By:	09/04/2024 09/04/2024 D.O. P.L.	
Drill Model and M Hole Diameter:	ounting: D4TAPG 115 mm	Inclination: -90° Bearing:	RL Surface: Datum:	No survey AHD Operato	r: A.Moore

SBH02 Depth Range: 4.50 - 4.95 m

SBH03

	lient:			g Log -					ings P	hy Ltd	Cor	nme	encec	I· 00	0/0/	2024	
-	rojec	-	me				acility l		-				eted:			2024 2024	
	lole L										-	-	By:	D.			
	lole F							550.0) m N (GDA2020 / Zone 55			d By				
)rill M Iole E			d Mounting: r·		D4TA 115 n				Inclination: -90° Bearing:	RL : Dat		ace:	No sui AHD	rvey		ator: A.Moore
												um.		AIID			
			Dril	ling Inform		on	1			Soil Descrip	tion						Observations
Method	Penetration	Support	Water	Samples Tests Remarks	Recovery	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description Fraction, Colour, Structure, Bedding Plasticity, Sensitivity, Additional	l' D'	Condition	Consistency Relative Density	Blows/100mm 5 10 15 20	Pen	Pocket etromet UCS (kPa)	Additional Observations
5			-	D	H		0.14m	P. b.	CI	FILL Sandy GRAVEL: fine to coarse grained, sub-angular to angular, grey;		<u>NA</u>	NA				FILL ALLUVIAL SOIL
				0.14-0.50 m D 0.50-1.50 m	\vdash		- - 1			Isand fine to coarse grained. Sandy CLAY trace gravel: medium plasticity, red and orange; sand fine to coarse grained; gravel fine to coarse grained sub-rounded to sub-angular.	, 						
			pa	SPT 1.50-1.95 m 8,11,13 N=24 1.95 m D 2.00-3.00 m			2						VSt				¥1.50: HP Samp ≻600 kPa
ווחא			Not Observed	SPT 3.00-3.45 m 8,12,19 N=31 3.45 m D 3.50-4.50 m			3 — <u>3.50m</u> — 4 —		СІ-СН	Silty CLAY trace sand: medium to high plasticity, pale yellow and orange; san fine grained.		/ <pl< td=""><td></td><td></td><td></td><td></td><td>¥3.00: HP Samp >600 kPa</td></pl<>					¥3.00: HP Samp >600 kPa
				SPT 4.50-4.95 m 8,13,16 N=29 4.95 m D 5.00-6.00 m	_								VSt				¥4.50: HP Samp >600 kPa
				SPT 6.00-6.45 m 9,13,17			-	×									¥6.00: HP Samp >600 kPa
				0,17 N=30 6.45 m			6.45m - - 7 -	<u> </u>		Hole Terminated at 6.45 m Criteria Satisfied							
A R V	 <u> </u> S - A R - R /B- W	<u>letho</u> uger cock f	Scre Rolle		No	tration presis anging refus	tance to	\triangleright	<u>Wate</u> Level (Inflow Partial Compl	Date) U - Undisturbed Sam D - Disturbed Sample SPT - Standard Penetra	ble	st		Moisture C D - [M - N W - N			Consistency/Relative Densit VS - Very Soft S - Soft F - Firm VSt - Very Stiff H - Hard
	_	ирро - Са					hic Log ore rec dicates ore loss	overed mater	Loss I (hatchi	Classification Svr	ions Soil			<i>Plastic</i> < P = P < P	Ĺ		VL - Very Loose L - Loose MD - Medium Dense D - Dense VD - Very Dense

SBH03

Page 2 of 3

Engineering	Log - Borehole		Project No.:	G24049	
Client: Project Name: Hole Location: Hole Position:	Phillip Yates Family Holdings Narromine Facility Upgrade Narromine NSW 615073.0 m E 6430550.0 m N		Commenced: Completed: Logged By: Checked By:	09/04/2024 09/04/2024 D.O. P.L.	
Drill Model and M Hole Diameter:	ounting: D4TAPG 115 mm	Inclination: -90° Bearing:	RL Surface: Datum:	No survey AHD Operato	or: A.Moore

SBH03 Depth Range: 1.50 - 1.95 m

SBH03

Page 3 of 3

Engineering	Log - Borehole		Project No .:	G24049	
Client: Project Name: Hole Location: Hole Position:	Phillip Yates Family Holdings Narromine Facility Upgrade Narromine NSW 615073.0 m E 6430550.0 m N		Commenced: Completed: Logged By: Checked By:	09/04/2024 09/04/2024 D.O. P.L.	
Drill Model and M Hole Diameter:	ounting: D4TAPG 115 mm	Inclination: -90° Bearing:	RL Surface: Datum:	No survey AHD Operato	or: A.Moore

SBH03 Depth Range: 4.50 - 4.95 m

SBH03 Depth Range: 6.00 - 6.45 m

SBH04

P H	lient: rojec ole L	t Na .ocai	tion	Narro	omii omii	ne Fa ne NS	acility (SW	Jpgra			Com Com Logg	oleteo ed By	l: 09 : D)/04/202)/04/202 .O.		
	ole P			6151: d Mounting:	-	0 m E D4TA		0547.0) m N (GDA2020 / Zone 55	Chec RL S		•			
	ole D			-		115 n				Bearing:	Datu		AHD	•	perat	or: A.Moore
		l	Drill	ing Informa	atic	on				Soil Descrip	tion					Observations
Method	Penetration	Support	Water	Samples Tests Remarks	Recovery	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description Fraction, Colour, Structure, Bedding Plasticity, Sensitivity, Additional	Moistu			Pock Penetro UC (kPa	meter S a)	Structure and Additional Observation
				D 0.10-0.50 m D 0.50-1.50 m			<u>0.10m</u> - - - 1		CI	FILL Silty CLAY with gravel with sand: I to medium plasticity, pale yellow; grave fine to coarse rounded to sub-rounded; sand fine to coarse grained. Sandy CLAY: medium plasticity, brown red and orange; sand fine to coarse grained.]					FILL ALLUVIAL SOIL
			p	SPT 1.50-1.95 m 8,9,10 N=19 1.95 m D 2.00-3.00 m			- - 2 - -									▼1.50: HP Samp >600 kPa
			Not Observed	SPT 3.00-3.45 m 6,9,13 N=22 3.45 m D 3.50-4.50 m			3 - - 4				w<	VS PL	t			¥3.00: HP Samp >600 kPa
				SPT 4.50-4.95 m 8,11,15 N=26 4.95 m D 5.00-6.00 m			<u>4.50m</u> - - 5 - - -		CI-CH	Silty CLAY trace sand: medium to high plasticity, pale yellow with mottled grey; sand fine to coarse grained.						¥4.50: HP Samp >600 kPa
				SPT 6.00-6.45 m 10,16,22 N=38 6.45 m			6			Hole Terminated at 6.45 m		H				¥6.00: HP Samp >600 kPa
							- 7 - - -			Criteria Satisfied						
AS RI W	<u>М</u> s - Ац R - Re /В- W	letho uger ock F asht	Scre Rollei		No	tration o resist anging refuse Gran	tance to	$\blacksquare \ \Box \ \blacksquare$	-	Date) U - Undisturbed Samp D - Disturbed Sample SPT - Standard Penetrati Loss ete Loss	le ion Test	_	<u>Moisture C</u> D - I M - I W - ⊻	Dry Moist Wet	Ċ	Consistency/Relative Densi VS - Very Soft S - Soft F - Firm VSt - Very Stiff H - Hard VL - Very Loose L - Loose
		и ррс - Са						overed mater	(hatchi	ng <u>Classification Sym</u> and Soil Descripti Based on Unified S	ons		< F = F < F	Ľ		MD - Medium Dense D - Dense VD - Very Dense

SBH04

Page 2 of 3

Engineering	Log - Borehole		Project No.:	G24049	
Client: Project Name: Hole Location: Hole Position:	Phillip Yates Family Holdings Narromine Facility Upgrade Narromine NSW 615120.0 m E 6430547.0 m N		Commenced: Completed: Logged By: Checked By:	09/04/2024 09/04/2024 D.O. P.L.	
Drill Model and M Hole Diameter:	ounting: D4TAPG 115 mm	Inclination: -90° Bearing:	RL Surface: Datum:	No survey AHD Operato	or: A.Moore

SBH04 Depth Range: 1.50 - 1.95 m

SBH04

Page 3 of 3

Engineering	Log - Borehole		Project No.:	G24049	
Client: Project Name: Hole Location: Hole Position:	Phillip Yates Family Holdings Narromine Facility Upgrade Narromine NSW 615120.0 m E 6430547.0 m N		Commenced: Completed: Logged By: Checked By:	09/04/2024 09/04/2024 D.O. P.L.	
Drill Model and M Hole Diameter:	ounting: D4TAPG 115 mm	Inclination: -90° Bearing:	RL Surface: Datum:	No survey AHD Operato	r: A.Moore

SBH04 Depth Range: 4.50 - 4.95 m

4 A

SBH05

F	Client: Projec	t Na		Narro			⁻ amily icility U		-	ty Ltd	Со	mple				2024 2024	
	lole L lole F							548 0	mN	GDA2020 / Zone 55		gged ecke	By: d By:	D. P.I			
				d Mounting:		D4TA				Inclination: -90°			ace:	No sur			
	lole [-		115 n	nm			Bearing:	Da	tum:		AHD	•	Oper	ator: A.Moore
			Dril	ling Informa	atio	n				Soil Descrip	tion						Observations
Method	Penetration	Support	Water	Samples Tests Remarks	Recovery	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description Fraction, Colour, Structure, Bedding Plasticity, Sensitivity, Additional	,	Moisture Condition	Consistency Relative Density	Blows/100mm 5 10 15 20	Pen	Pocket etromet UCS (kPa)	Additional Observations
				D 0.10-0.50 m			<u>0.10m</u>		CL-CI	TOPSOIL Silty CLAY: medium plasticity dark brown; with rootlets < 5mm.	/, /	<u>NA</u> .	<u>NA</u> /				TOPSOIL
				SPT 0.50-0.95 m 6,12,14 N=26 0.95 m D			0.50m	, × × × × × × × × ×	CI-CH	Sandy CLAY: low to medium plasticity, (dark brown; sand fine to coarse graine Silty CLAY trace sand: medium to high plasticity, brown and orange; sand fine coarse grained.			VSt				X 0.50: HP Samp ≻600 kPa
				1.00-2.00 m SPT 2.00-2.45 m 10,17,18 N=35 2.45 m D			2.50m	· · · · · · · · · · · · · · · · · · ·	CI-CH	Silty CLAY trace sand: medium to high							¥2.00: HP Samp >600 kPa
AU/I			Not Observed	2.50-3.50 m 2.50-3.50 m 3.50-3.95 m 9,16,23 N=39 3.95 m D 4.00-5.00 m				· · · · · · · · · ·		plasticity, pale brown, orange and yello sand fine to coarse grained.		w <pl< td=""><td>н</td><td></td><td></td><td></td><td>¥3.50: HP Samp >600 kPa</td></pl<>	н				¥3.50: HP Samp >600 kPa
				SPT 5.00-5.45 m 12,18,27 N=45 5.45 m			5 										¥5.00: HP Samp >600 kPa
				D 5.50-6.00 m SPT 6.00-6.45 m 12,21,30 N=51			6.45m -										¥6.00: HP Samp >600 kPa
				6.45 m			7			Hole Terminated at 6.45 m Criteria Satisfied							
R	<u>N</u> NS - A RR - R VB- W	očk F	Scre Rolle	wing 🗖	No ra	tration o resist anging refusa	tance to	$\land \lor$	<u>Wate</u> Level (Inflow Partial Compl	Date) U - Undisturbed Samp D - Disturbed Sample SPT - Standard Penetrat	le	est		Moisture Co D - E M - M W - V	Dry <i>N</i> oist Vet		Consistency/Relative Densi VS - Very Soft S - Soft F - Firm VSt - Very Stiff H - Hard VL - Very Loose
		<u>ирро</u> - Са	<u>ort</u> asing				hic Log/ ore reco dicates i ore loss	vered	(hatchi	ng <u>Classification Sym</u> <u>and Soil Description</u> Based on Unified	ons			<u>Plastic I</u> < Pl = Pl < Pl	L L		L - Very Loose L - Loose MD - Medium Dense D - Dense VD - Very Dense

SBH05

Page 2 of 4

Engineering	Log - Borehole		Project No.:	G24049	
Client: Project Name: Hole Location: Hole Position:	Phillip Yates Family Holdings Narromine Facility Upgrade Narromine NSW 615082.0 m E 6430648.0 m N		Commenced: Completed: Logged By: Checked By:	04/03/2024 04/04/2024 D.O. P.L.	
Drill Model and M Hole Diameter:	ounting: D4TAPG 115 mm	Inclination: -90° Bearing:	P RL Surface: Datum:	No survey AHD Operate	or: A.Moore

SBH05 Depth Range: 0.05 - 0.95 m

PROJECT G24049	GEOTECH LOGGER D.O
HOLE SBHOS	DATE 04/04/2024
	2.45m SPT BLOWS (150mm) 10 17 18 35 pp
360 340 320 300 280 260 240	220 200 180 160 140 120 100 80 60 40 20
March Stores	
THE	

MG 4/20 LB_MMURRANCH GLB Log MG BORFHOLE 6.20448.GPJ < 407mingFiles > 04083/261 1137 10 0220.04 Daiget Labardin Silu Tool - DGD LLB. DGDTP 4/01/2 dej 2042124 27 PG DGDTP 4/00 62777 + 125

SBH05

Page 3 of 4

Engineering	Log - Borehole		Project No.:	G24049	
Client: Project Name: Hole Location: Hole Position:	Phillip Yates Family Holdings Narromine Facility Upgrade Narromine NSW 615082.0 m E 6430648.0 m N		Commenced: Completed: Logged By: Checked By:	04/03/2024 04/04/2024 D.O. P.L.	
Drill Model and M Hole Diameter:	ounting: D4TAPG 115 mm	Inclination: -90° Bearing:	RL Surface: Datum:	No survey AHD Operato	or: A.Moore

SBH05 Depth Range: 3.50 - 3.95 m

SBH05

Page 4 of 4

Engineering	Log - Borehole		Project No.	: G24049	
Client: Project Name: Hole Location: Hole Position:	Phillip Yates Family Holdings Narromine Facility Upgrade Narromine NSW 615082.0 m E 6430648.0 m N		Commence Completed Logged By: Checked B	: 04/04/2024 D.O.	
Drill Model and M Hole Diameter:	lounting: D4TAPG 115 mm	Inclination: -90 Bearing:	0° RL Surface Datum:	· · · · · · · · · · · · · · · · · · ·	or: A.Moore

SBH05 Depth Range: 6.00 - 6.45 m

CERTIFICATE OF ANALYSIS 349276

Client Details	
Client	Macquarie Geotech
Attention	Pathum Lakruwan
Address	3 Watt Dr, Bathurst, NSW, 2795

Sample Details	
Your Reference	<u>G24049</u>
Number of Samples	10 Soil
Date samples received	19/04/2024
Date completed instructions received	19/04/2024

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details	
Date results requested by	29/04/2024
Date of Issue	29/04/2024
NATA Accreditation Number 29	01. This document shall not be reproduced except in full.
Accredited for compliance with I	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Results Approved By Diego Bigolin, Inorganics Supervisor Loren Bardwell, Development Chemist Timothy Toll, Senior Chemist <u>Authorised By</u> Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		349276-1	349276-2	349276-3	349276-4	349276-5
Your Reference	UNITS	EBH01	EBH02	EBH03	EBH04	EBH05
Depth		0.3-0.5	0.3-0.5	0.3-0.5	0.3-0.5	0.3-0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/04/2024	22/04/2024	22/04/2024	22/04/2024	22/04/2024
Date analysed	-	29/04/2024	29/04/2024	29/04/2024	29/04/2024	29/04/2024
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C6 - C10	mg/kg	<25	<25	<25	<25	<25
vTRH C6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	88	88	70	86	86
vTRH(C6-C10)/BTEXN in Soil						
Our Reference		349276-6	349276-7	349276-8	349276-9	349276-10
Your Reference	UNITS	EBH06	EBH07	EBH08	EBH09	EBH10
Depth		1.3-1.5	0.5-0.7	0.3-0.5	0.3-0.5	0.3-0.5
Type of sample		Soil	Soil	Soil	Soil	Soil

Depth		1.3-1.5	0.5-0.7	0.3-0.5	0.3-0.5	0.3-0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/04/2024	22/04/2024	22/04/2024	22/04/2024	22/04/2024
Date analysed	-	29/04/2024	29/04/2024	29/04/2024	29/04/2024	29/04/2024
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTRH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	86	84	87	83	84

svTRH (C10-C40) in Soil						
Our Reference		349276-1	349276-2	349276-3	349276-4	349276-5
Your Reference	UNITS	EBH01	EBH02	EBH03	EBH04	EBH05
Depth		0.3-0.5	0.3-0.5	0.3-0.5	0.3-0.5	0.3-0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/04/2024	22/04/2024	22/04/2024	22/04/2024	22/04/2024
Date analysed	-	23/04/2024	23/04/2024	23/04/2024	23/04/2024	23/04/2024
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50	<50
TRH >C10 -C16	mg/kg	<50	<50	<50	<50	<50
TRH >C10 -C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	84	78	86	78	78

svTRH (C10-C40) in Soil						
Our Reference		349276-6	349276-7	349276-8	349276-9	349276-10
Your Reference	UNITS	EBH06	EBH07	EBH08	EBH09	EBH10
Depth		1.3-1.5	0.5-0.7	0.3-0.5	0.3-0.5	0.3-0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/04/2024	22/04/2024	22/04/2024	22/04/2024	22/04/2024
Date analysed	-	23/04/2024	23/04/2024	23/04/2024	23/04/2024	23/04/2024
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C10 -C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	83	82	77	83	85

PAHs in Soil						
Our Reference		349276-1	349276-2	349276-3	349276-4	349276-5
Your Reference	UNITS	EBH01	EBH02	EBH03	EBH04	EBH05
Depth		0.3-0.5	0.3-0.5	0.3-0.5	0.3-0.5	0.3-0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/04/2024	22/04/2024	22/04/2024	22/04/2024	22/04/2024
Date analysed	-	23/04/2024	23/04/2024	23/04/2024	23/04/2024	23/04/2024
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	103	112	102	110	103

PAHs in Soil						
Our Reference		349276-6	349276-7	349276-8	349276-9	349276-10
Your Reference	UNITS	EBH06	EBH07	EBH08	EBH09	EBH10
Depth		1.3-1.5	0.5-0.7	0.3-0.5	0.3-0.5	0.3-0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/04/2024	22/04/2024	22/04/2024	22/04/2024	22/04/2024
Date analysed	-	23/04/2024	23/04/2024	24/04/2024	24/04/2024	24/04/2024
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	114	110	100	102	95

Organochlorine Pesticides in soil						
Our Reference		349276-1	349276-2	349276-3	349276-4	349276-5
Your Reference	UNITS	EBH01	EBH02	EBH03	EBH04	EBH05
Depth		0.3-0.5	0.3-0.5	0.3-0.5	0.3-0.5	0.3-0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/04/2024	22/04/2024	22/04/2024	22/04/2024	22/04/2024
Date analysed	-	23/04/2024	23/04/2024	23/04/2024	23/04/2024	23/04/2024
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 4-Chloro-3-NBTF	%	98	97	96	92	92

Organochlorine Pesticides in soil						
Our Reference		349276-6	349276-7	349276-8	349276-9	349276-10
Your Reference	UNITS	EBH06	EBH07	EBH08	EBH09	EBH10
Depth		1.3-1.5	0.5-0.7	0.3-0.5	0.3-0.5	0.3-0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/04/2024	22/04/2024	22/04/2024	22/04/2024	22/04/2024
Date analysed	-	23/04/2024	23/04/2024	24/04/2024	24/04/2024	24/04/2024
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
нсв	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 4-Chloro-3-NBTF	%	94	92	74	83	74

Organophosphorus Pesticides in Soil						
Our Reference		349276-1	349276-2	349276-3	349276-4	349276-5
Your Reference	UNITS	EBH01	EBH02	EBH03	EBH04	EBH05
Depth		0.3-0.5	0.3-0.5	0.3-0.5	0.3-0.5	0.3-0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/04/2024	22/04/2024	22/04/2024	22/04/2024	22/04/2024
Date analysed	-	23/04/2024	23/04/2024	23/04/2024	23/04/2024	23/04/2024
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mevinphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phorate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Disulfoton	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion-Methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenthion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methidathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenamiphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phosalone	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Coumaphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 4-Chloro-3-NBTF	%	98	97	96	92	92

Organophosphorus Pesticides in Soil				_	_	
Our Reference		349276-6	349276-7	349276-8	349276-9	349276-10
Your Reference	UNITS	EBH06	EBH07	EBH08	EBH09	EBH10
Depth		1.3-1.5	0.5-0.7	0.3-0.5	0.3-0.5	0.3-0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/04/2024	22/04/2024	22/04/2024	22/04/2024	22/04/2024
Date analysed	-	23/04/2024	23/04/2024	24/04/2024	24/04/2024	24/04/2024
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mevinphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phorate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Disulfoton	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion-Methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenthion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methidathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenamiphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phosalone	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Coumaphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 4-Chloro-3-NBTF	%	94	92	74	83	74

PCBs in Soil					_	
Our Reference		349276-1	349276-2	349276-3	349276-4	349276-5
Your Reference	UNITS	EBH01	EBH02	EBH03	EBH04	EBH05
Depth		0.3-0.5	0.3-0.5	0.3-0.5	0.3-0.5	0.3-0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/04/2024	22/04/2024	22/04/2024	22/04/2024	22/04/2024
Date analysed	-	23/04/2024	23/04/2024	23/04/2024	23/04/2024	23/04/2024
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 2-Fluorobiphenyl	%	101	98	98	97	95

PCBs in Soil						
Our Reference		349276-6	349276-7	349276-8	349276-9	349276-10
Your Reference	UNITS	EBH06	EBH07	EBH08	EBH09	EBH10
Depth		1.3-1.5	0.5-0.7	0.3-0.5	0.3-0.5	0.3-0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/04/2024	22/04/2024	22/04/2024	22/04/2024	22/04/2024
Date analysed	-	23/04/2024	23/04/2024	24/04/2024	24/04/2024	24/04/2024
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 2-Fluorobiphenyl	%	99	89	79	79	79

Acid Extractable metals in soil						
Our Reference		349276-1	349276-2	349276-3	349276-4	349276-5
Your Reference	UNITS	EBH01	EBH02	EBH03	EBH04	EBH05
Depth		0.3-0.5	0.3-0.5	0.3-0.5	0.3-0.5	0.3-0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	23/04/2024	23/04/2024	23/04/2024	23/04/2024	23/04/2024
Date analysed	-	23/04/2024	23/04/2024	23/04/2024	23/04/2024	23/04/2024
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	23	26	20	21	22
Copper	mg/kg	15	17	14	14	16
Lead	mg/kg	10	11	8	9	11
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	12	12	10	10	11
Zinc	mg/kg	18	18	14	17	17

Acid Extractable metals in soil						
Our Reference		349276-6	349276-7	349276-8	349276-9	349276-10
Your Reference	UNITS	EBH06	EBH07	EBH08	EBH09	EBH10
Depth		1.3-1.5	0.5-0.7	0.3-0.5	0.3-0.5	0.3-0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	23/04/2024	23/04/2024	23/04/2024	23/04/2024	23/04/2024
Date analysed	-	23/04/2024	23/04/2024	23/04/2024	23/04/2024	23/04/2024
Arsenic	mg/kg	4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	26	29	21	17	19
Copper	mg/kg	19	15	14	12	11
Lead	mg/kg	15	13	10	8	8
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	15	15	11	8	9
Zinc	mg/kg	26	22	15	13	14

Misc Soil - Inorg						
Our Reference		349276-1	349276-2	349276-3	349276-4	349276-5
Your Reference	UNITS	EBH01	EBH02	EBH03	EBH04	EBH05
Depth		0.3-0.5	0.3-0.5	0.3-0.5	0.3-0.5	0.3-0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	23/04/2024	23/04/2024	23/04/2024	23/04/2024	23/04/2024
Date analysed	-	23/04/2024	23/04/2024	23/04/2024	23/04/2024	23/04/2024
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5
Misc Soil - Inorg						
Our Reference		349276-6	349276-7	349276-8	349276-9	349276-10
Your Reference	UNITS	EBH06	EBH07	EBH08	EBH09	EBH10
Depth		1.3-1.5	0.5-0.7	0.3-0.5	0.3-0.5	0.3-0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	23/04/2024	23/04/2024	23/04/2024	23/04/2024	23/04/2024
Date analysed	-	23/04/2024	23/04/2024	23/04/2024	23/04/2024	23/04/2024
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5

Moisture					_	
Our Reference		349276-1	349276-2	349276-3	349276-4	349276-5
Your Reference	UNITS	EBH01	EBH02	EBH03	EBH04	EBH05
Depth		0.3-0.5	0.3-0.5	0.3-0.5	0.3-0.5	0.3-0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/04/2024	22/04/2024	22/04/2024	22/04/2024	22/04/2024
Date analysed	-	23/04/2024	23/04/2024	23/04/2024	23/04/2024	23/04/2024
Moisture	%	16	20	17	20	17
Moisture						
Our Reference		349276-6	349276-7	349276-8	349276-9	349276-10
Your Reference	UNITS	EBH06	EBH07	EBH08	EBH09	EBH10
Depth		1.3-1.5	0.5-0.7	0.3-0.5	0.3-0.5	0.3-0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/04/2024	22/04/2024	22/04/2024	22/04/2024	22/04/2024
Date analysed	-	23/04/2024	23/04/2024	23/04/2024	23/04/2024	23/04/2024
Moisture	%	17	23	16	11	19
sPOCAS field test						
---	----------	---------------	---------------	-------------------	-------------------	-------------------
Our Reference		349276-2	349276-4	349276-6	349276-8	349276-10
Your Reference	UNITS	EBH02	EBH04	EBH06	EBH08	EBH10
Depth		0.3-0.5	0.3-0.5	1.3-1.5	0.3-0.5	0.3-0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	24/04/2024	24/04/2024	24/04/2024	24/04/2024	24/04/2024
Date analysed	-	24/04/2024	24/04/2024	24/04/2024	24/04/2024	24/04/2024
pH _F (field pH test)	pH Units	6.8	5.9	7.4	6.7	7.1
pH _{FOX} (field peroxide test)	pH Units	4.6	4.6	6.6	6.3	5.0
Reaction Rate*	-	High reaction	High reaction	Volcanic reaction	Volcanic reaction	Volcanic reaction

Method ID	Methodology Summary
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Inorg-063	pH- measured using pH meter and electrode. Soil is oxidised with Hydrogen Peroxide or extracted with water. To ensure accurate results these tests are recommended to be done in the field as pH may change with time thus these results may not be representative of true field conditions.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021/022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD and/or GC-MS/GC-MSMS.
	Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.

Method ID	Methodology Summary
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:-
	 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" li="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" teq="" teqs="" that="" the="" this="" to=""> 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" li="" more="" negative="" pahs="" pql.<="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""> 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" li="" mid-point="" most="" pql.="" stipulated="" the=""> </pql></pql></pql>
	Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	ROL: vTRH	(C6-C10)	BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	349276-2
Date extracted	-			22/04/2024	1	22/04/2024	22/04/2024		22/04/2024	22/04/2024
Date analysed	-			29/04/2024	1	29/04/2024	29/04/2024		29/04/2024	29/04/2024
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	1	<25	<25	0	106	109
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	1	<25	<25	0	106	109
Benzene	mg/kg	0.2	Org-023	<0.2	1	<0.2	<0.2	0	87	89
Toluene	mg/kg	0.5	Org-023	<0.5	1	<0.5	<0.5	0	107	106
Ethylbenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	107	111
m+p-xylene	mg/kg	2	Org-023	<2	1	<2	<2	0	115	119
o-Xylene	mg/kg	1	Org-023	<1	1	<1	<1	0	114	119
Naphthalene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	94	1	88	87	1	85	81

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	349276-2
Date extracted	-			22/04/2024	1	22/04/2024	22/04/2024		22/04/2024	22/04/2024
Date analysed	-			23/04/2024	1	23/04/2024	23/04/2024		23/04/2024	23/04/2024
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	1	<50	<50	0	111	104
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	1	<100	<100	0	126	114
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	1	<100	<100	0	86	116
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	1	<50	<50	0	111	104
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	1	<100	<100	0	126	114
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	1	<100	<100	0	86	116
Surrogate o-Terphenyl	%		Org-020	78	1	84	77	9	90	78

QUALI	TY CONTRC	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	349276-2
Date extracted	-			22/04/2024	1	22/04/2024	22/04/2024		22/04/2024	22/04/2024
Date analysed	-			24/04/2024	1	23/04/2024	23/04/2024		23/04/2024	23/04/2024
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	68	90
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	70	94
Fluorene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	64	94
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	80	100
Anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	80	102
Pyrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	78	98
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	64	86
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	1	<0.05	<0.05	0	84	118
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	111	1	103	115	11	89	93

QUALITY CONT	ROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	349276-2
Date extracted	-			22/04/2024	1	22/04/2024	22/04/2024		22/04/2024	22/04/2024
Date analysed	-			24/04/2024	1	23/04/2024	23/04/2024		23/04/2024	23/04/2024
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	70	98
НСВ	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	76	106
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	78	96
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	82	100
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	84	110
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	76	98
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	100	120
Endrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	80	102
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	76	96
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	66	78
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Mirex	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate 4-Chloro-3-NBTF	%		Org-022/025	102	1	98	98	0	82	89

QUALITY CONTRO	L: Organoph	nosphorus	s Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	349276-2
Date extracted	-			22/04/2024	1	22/04/2024	22/04/2024		22/04/2024	22/04/2024
Date analysed	-			24/04/2024	1	23/04/2024	23/04/2024		23/04/2024	23/04/2024
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	128	132
Mevinphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Phorate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Disulfoton	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chlorpyrifos-methyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Parathion-Methyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	96	120
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	112	136
Malathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	104	122
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	102	126
Fenthion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Parathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	108	132
Bromophos-ethyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Methidathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fenamiphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	118	138
Phosalone	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Coumaphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate 4-Chloro-3-NBTF	%		Org-022/025	102	1	98	98	0	82	89

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	349276-2
Date extracted	-			22/04/2024	1	22/04/2024	22/04/2024		22/04/2024	22/04/2024
Date analysed	-			24/04/2024	1	23/04/2024	23/04/2024		23/04/2024	23/04/2024
Aroclor 1016	mg/kg	0.1	Org-021/022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021/022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021/022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021/022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021/022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021/022/025	<0.1	1	<0.1	<0.1	0	84	100
Aroclor 1260	mg/kg	0.1	Org-021/022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate 2-Fluorobiphenyl	%		Org-021/022/025	97	1	101	97	4	78	84

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	349276-2
Date prepared	-			23/04/2024	1	23/04/2024	23/04/2024		23/04/2024	23/04/2024
Date analysed	-			23/04/2024	1	23/04/2024	23/04/2024		23/04/2024	23/04/2024
Arsenic	mg/kg	4	Metals-020	<4	1	<4	<4	0	117	104
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	109	95
Chromium	mg/kg	1	Metals-020	<1	1	23	20	14	113	100
Copper	mg/kg	1	Metals-020	<1	1	15	14	7	111	103
Lead	mg/kg	1	Metals-020	<1	1	10	9	11	115	102
Mercury	mg/kg	0.1	Metals-021	<0.1	1	<0.1	<0.1	0	100	99
Nickel	mg/kg	1	Metals-020	<1	1	12	11	9	115	102
Zinc	mg/kg	1	Metals-020	<1	1	18	15	18	108	91

QUALITY	CONTROL	Misc Soi	il - Inorg		Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	349276-2	
Date prepared	-			23/04/2024	1	23/04/2024	23/04/2024		23/04/2024	23/04/2024	
Date analysed	-			23/04/2024	1	23/04/2024	23/04/2024		23/04/2024	23/04/2024	
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	<5	1	<5	<5	0	99	100	

QUALITY	CONTROL:	sPOCAS	field test		Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			24/04/2024	[NT]		[NT]	[NT]	24/04/2024	
Date analysed	-			24/04/2024	[NT]		[NT]	[NT]	24/04/2024	
pH _F (field pH test)	pH Units		Inorg-063	[NT]	[NT]		[NT]	[NT]	99	
pH _{FOX} (field peroxide test)	pH Units		Inorg-063	[NT]	[NT]		[NT]	[NT]	99	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Number:	D24010-47
Issue Number:	1
Date Issued:	09/05/2024
Client:	Macquarie Geotechnical
	3 Watt Drive, Bathurst NSW 2795
Project Number:	D24010
Project Name:	Dubbo Laboratory Testing
Client Reference:	G24049
Work Request:	2358
Sample Number:	DBO-2358A
Date Sampled:	04/04/2024
Dates Tested:	23/04/2024 - 09/05/2024
Sampling Method:	AS 1289.1.2.1 6.5.3 - Power auger drilling
Preparation Method:	AS 1289.1.1 - Sampling and Preparation of Soils
Sample Location:	Phillip Yates - Narromine Facilty Upgrade
Lot No:	EBH01 0.50-1.00m

Moisture Content (AS 1289 2.1.1)		Min	Max
Moisture Content (%)	13.8		
Atterberg Limit (AS1289 3.1.1 & 3.2	2.1 & 3.3.1)	Min	Max
Sample History	Oven Dried		
Preparation Method	Dry Sieve		
Liquid Limit (%)	49		
Plastic Limit (%)	17		
Plasticity Index (%)	32		
Linear Shrinkage (AS1289 3.4.1)		Min	Max
Sample History	Oven Dried		
Preparation Method	Dry Sieve		
Moisture Condition Determined By	AS 1289.3.1.2		
Linear Shrinkage (%)	12.5		
Cracking Crumbling Curling	Cracking Crumbling Curling Cracking & C		
Emerson Class Number of a Soil (A	S 1289 3.8.1)	Min	Max
Emerson Class	2		
Soil Description	Sandy CLAY		
Nature of Water	Distilled		
Temperature of Water (°C)	19		

Macquarie Geotechnical Pty Ltd Dubbo Laboratory 7 Energy Place Dubbo NSW 2830 Phone: (02) 6332 2011 Email: macgeo@macgeo.com.au Accredited for compliance with ISO/IEC 17025 - Testing

Report Number:	D24010-47
Issue Number:	1
Date Issued:	09/05/2024
Client:	Macquarie Geotechnical
	3 Watt Drive, Bathurst NSW 2795
Project Number:	D24010
Project Name:	Dubbo Laboratory Testing
Client Reference:	G24049
Work Request:	2358
Sample Number:	DBO-2358B
Date Sampled:	04/04/2024
Dates Tested:	23/04/2024 - 30/04/2024
Sampling Method:	AS 1289.1.2.1 6.5.3 - Power auger drilling
Preparation Method:	AS 1289.1.1 - Sampling and Preparation of Soils
Sample Location:	Phillip Yates - Narromine Facilty Upgrade
Lot No:	SBH02 0.18-0.50m

Moisture Content (AS 1289 2.1.1)		Min	Max
Moisture Content (%)	16.3		

Macquarie Geotechnical Pty Ltd Dubbo Laboratory 7 Energy Place Dubbo NSW 2830 Phone: (02) 6332 2011 Email: macgeo@macgeo.com.au Accredited for compliance with ISO/IEC 17025 - Testing

NATA

Report Number:	D24010-47
Issue Number:	1
Date Issued:	09/05/2024
Client:	Macquarie Geotechnical
	3 Watt Drive, Bathurst NSW 2795
Project Number:	D24010
Project Name:	Dubbo Laboratory Testing
Client Reference:	G24049
Work Request:	2358
Sample Number:	DBO-2358C
Date Sampled:	04/04/2024
Dates Tested:	23/04/2024 - 09/05/2024
Sampling Method:	AS 1289.1.2.1 6.5.3 - Power auger drilling
Preparation Method:	AS 1289.1.1 - Sampling and Preparation of Soils
Sample Location:	Phillip Yates - Narromine Facilty Upgrade
Lot No:	SBH02 0.50-1.00m

Atterberg Limit (AS1289 3.1.1 & 3.2.1 & 3.3.1)		Min	Max
Sample History	Oven Dried		
Preparation Method	Dry Sieve		_
Liquid Limit (%)	46		
Plastic Limit (%)	15		
Plasticity Index (%)	31		
Linear Shrinkage (AS1289 3.4.1)		Min	Max
Sample History	Oven Dried		
Preparation Method	Dry Sieve		
Moisture Condition Determined By	AS 1289.3.1.2		
Linear Shrinkage (%)	9.5		
Cracking Crumbling Curling Cracl		Curling	
Emerson Class Number of a Soil (A	S 1289 3.8.1)	Min	Max
Emerson Class	2		
Soil Description	Sandy CLAY		
Nature of Water	Distilled		
Temperature of Water (°C)	19		

Macquarie Geotechnical Pty Ltd Dubbo Laboratory 7 Energy Place Dubbo NSW 2830 Phone: (02) 6332 2011 Email: macgeo@macgeo.com.au Accredited for compliance with ISO/IEC 17025 - Testing

NATA

Report Number:	D24010-47
Issue Number:	1
Date Issued:	09/05/2024
Client:	Macquarie Geotechnical
	3 Watt Drive, Bathurst NSW 2795
Project Number:	D24010
Project Name:	Dubbo Laboratory Testing
Client Reference:	G24049
Work Request:	2358
Sample Number:	DBO-2358D
Date Sampled:	04/04/2024
Dates Tested:	23/04/2024 - 09/05/2024
Sampling Method:	AS 1289.1.2.1 6.5.3 - Power auger drilling
Preparation Method:	AS 1289.1.1 - Sampling and Preparation of Soils
Sample Location:	Phillip Yates - Narromine Facilty Upgrade
Lot No:	SBH03 0.50-1.50m

Moisture Content (AS 1289 2.1.1)		Min	Max
Moisture Content (%)	15.6		
Atterberg Limit (AS1289 3.1.1 & 3.2	2.1 & 3.3.1)	Min	Max
Sample History	Oven Dried		
Preparation Method	Dry Sieve		
Liquid Limit (%)	50		
Plastic Limit (%)	19		
Plasticity Index (%)	31		
Linear Shrinkage (AS1289 3.4.1)		Min	Max
Sample History	Oven Dried		
Preparation Method	Dry Sieve		
Moisture Condition Determined By	AS 1289.3.1.2		
Linear Shrinkage (%)	11.5		
Cracking Crumbling Curling Cracking &		Curling	
Emerson Class Number of a Soil (A	S 1289 3.8.1)	Min	Max
Emerson Class	2		
Soil Description	Sandy CLAY		
Nature of Water	Distilled		
Temperature of Water (°C)	19		

Macquarie Geotechnical Pty Ltd Dubbo Laboratory 7 Energy Place Dubbo NSW 2830 Phone: (02) 6332 2011 Email: macgeo@macgeo.com.au Accredited for compliance with ISO/IEC 17025 - Testing

Report Number:	D24010-47
Issue Number:	1
Date Issued:	09/05/2024
Client:	Macquarie Geotechnical
	3 Watt Drive, Bathurst NSW 2795
Project Number:	D24010
Project Name:	Dubbo Laboratory Testing
Client Reference:	G24049
Work Request:	2358
Sample Number:	DBO-2358E
Date Sampled:	04/04/2024
Dates Tested:	23/04/2024 - 06/05/2024
Sampling Method:	AS 1289.1.2.1 6.5.3 - Power auger drilling
Preparation Method:	AS 1289.1.1 - Sampling and Preparation of Soils
Sample Location:	Phillip Yates - Narromine Facilty Upgrade
Lot No:	SBH04 0.10-0.50m

Moisture Content (AS 1289 2.1.1)		Min	Max
Moisture Content (%)	14.7		
Atterberg Limit (AS1289 3.1.2 & 3.2	2.1 & 3.3.1)	Min	Max
Sample History	Oven Dried		
Preparation Method	Dry Sieve		
Liquid Limit (%)	45		
Plastic Limit (%)	16		
Plasticity Index (%)	29		
Linear Shrinkage (AS1289 3.4.1)		Min	Max
Sample History	Oven Dried		
Preparation Method	Dry Sieve		
Moisture Condition Determined By	AS 1289.3.1.2		
Linear Shrinkage (%)	10.0		
Cracking Crumbling Curling	Cracking & (Curling	
Emerson Class Number of a Soil (A	S 1289 3.8.1)	Min	Max
Emerson Class	2		
Soil Description	Sandy CLAY		
Nature of Water	Distilled		
Temperature of Water (^o C)	19		

Macquarie Geotechnical Pty Ltd Dubbo Laboratory 7 Energy Place Dubbo NSW 2830 Phone: (02) 6332 2011 Email: macgeo@macgeo.com.au Accredited for compliance with ISO/IEC 17025 - Testing

Report Number:	D24010-47
Issue Number:	1
Date Issued:	09/05/2024
Client:	Macquarie Geotechnical
	3 Watt Drive, Bathurst NSW 2795
Project Number:	D24010
Project Name:	Dubbo Laboratory Testing
Client Reference:	G24049
Work Request:	2358
Sample Number:	DBO-2358F
Date Sampled:	04/04/2024
Dates Tested:	23/04/2024 - 30/04/2024
Sampling Method:	AS 1289.1.2.1 6.5.3 - Power auger drilling
Preparation Method:	AS 1289.1.1 - Sampling and Preparation of Soils
Sample Location:	Phillip Yates - Narromine Facilty Upgrade
Lot No:	SBH04 0.50-1.50m

Moisture Content (AS 1289 2.1.1)		Min	Max
Moisture Content (%)	14.7		

Macquarie Geotechnical Pty Ltd Dubbo Laboratory 7 Energy Place Dubbo NSW 2830 Phone: (02) 6332 2011 Email: macgeo@macgeo.com.au Accredited for compliance with ISO/IEC 17025 - Testing

NATA

Report Number:	D24010-47
Issue Number:	1
Date Issued:	09/05/2024
Client:	Macquarie Geotechnical
	3 Watt Drive, Bathurst NSW 2795
Project Number:	D24010
Project Name:	Dubbo Laboratory Testing
Client Reference:	G24049
Work Request:	2358
Sample Number:	DBO-2358H
Date Sampled:	04/04/2024
Dates Tested:	23/04/2024 - 06/05/2024
Sampling Method:	AS 1289.1.2.1 6.5.3 - Power auger drilling
Preparation Method:	AS 1289.1.1 - Sampling and Preparation of Soils
Sample Location:	Phillip Yates - Narromine Facilty Upgrade
Lot No:	SBH04 0.10-4.50m

California Bearing Ratio (AS 1289 6.1.1 & 2.	.1.1)	Min	Max		
CBR taken at	2.5 mm				
CBR %	5				
Method of Compactive Effort	Standard				
Method used to Determine MDD	AS1289 5.	1.1 & 2	.1.1		
Method used to Determine Plasticity	Technician	Assess	ment		
Maximum Dry Density (t/m ³)	1.74				
Optimum Moisture Content (%)	17.0				
Laboratory Density Ratio (%)	99.5				
Laboratory Moisture Ratio (%)	99.5				
Dry Density after Soaking (t/m ³)	1.71				
Field Moisture Content (%)	14.7				
Moisture Content at Placement (%)	17.1				
Moisture Content Top 30mm (%)	22.8				
Moisture Content Rest of Sample (%)	18.6				
Mass Surcharge (kg)	4.5				
Soaking Period (days)	4				
Curing Hours (h)	196.2				
Swell (%)	1.5				
Oversize Material (mm)	19				
Oversize Material Included	Excluded				
Oversize Material (%)	0.0				

MACQUARIE GEOŢECH

Macquarie Geotechnical Pty Ltd Dubbo Laboratory 7 Energy Place Dubbo NSW 2830 Phone: (02) 6332 2011 Email: macgeo@macgeo.com.au

Accredited for compliance with ISO/IEC 17025 - Testing

NATA

Report Number:	D24010-47
Issue Number:	1
Date Issued:	09/05/2024
Client:	Macquarie Geotechnical
	3 Watt Drive, Bathurst NSW 2795
Project Number:	D24010
Project Name:	Dubbo Laboratory Testing
Client Reference:	G24049
Work Request:	2358
Sample Number:	DBO-2358G
Date Sampled:	04/04/2024
Dates Tested:	23/04/2024 - 01/05/2024
Sampling Method:	AS 1289.1.2.1 6.5.3 - Power auger drilling
Preparation Method:	AS 1289.1.1 - Sampling and Preparation of Soils
Sample Location:	Phillip Yates - Narromine Facilty Upgrade
Lot No:	SBH05 0.10-0.50m

Atterberg Limit (AS1289 3.1.2 & 3.2	.1 & 3.3.1)	Min	Max
Sample History	Oven Dried		
Preparation Method	Dry Sieve		
Liquid Limit (%)	30		
Plastic Limit (%)	13		
Plasticity Index (%)	17		
Linear Shrinkage (AS1289 3.4.1)		Min	Max
Sample History	Oven Dried		
Preparation Method	Dry Sieve		
Moisture Condition Determined By	AS 1289.3.1.2		
Linear Shrinkage (%)	7.0		
Cracking Crumbling Curling	Cracking & 0	Curling	
Emerson Class Number of a Soil (A	S 1289 3.8.1)	Min	Max
Emerson Class	3		
Soil Description	Sandy CLAY		
Nature of Water	Distilled		
Temperature of Water (°C)	18		

Macquarie Geotechnical Pty Ltd Dubbo Laboratory 7 Energy Place Dubbo NSW 2830 Phone: (02) 6332 2011 Email: macgeo@macgeo.com.au Accredited for compliance with ISO/IEC 17025 - Testing

NATA

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 350086

Client Details	
Client	Macquarie Geotech (Dubbo)
Attention	D Webb
Address	3 Watt Dr, Bathurst, NSW, 2795

Sample Details	
Your Reference	G24049 DBO-2358 Narromine Facility Upgrade Phillip
Number of Samples	5 Soil
Date samples received	01/05/2024
Date completed instructions received	01/05/2024

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details	
Date results requested by	08/05/2024
Date of Issue	08/05/2024
NATA Accreditation Number 29	01. This document shall not be reproduced except in full.
Accredited for compliance with I	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

<u>Results Approved By</u> Diego Bigolin, Inorganics Supervisor Authorised By Nancy Zhang, Laboratory Manager

Misc Inorg - Soil						
Our Reference		350086-1	350086-2	350086-3	350086-4	350086-5
Sample ID	UNITS	DBO-2358 A	DBO-2358 B	DBO-2358 D	DBO-2358 F	DBO-2358 G
Your Reference		G24049 - EBH01	G24049 - SBH02	G24049 - SBH03	G24049 - SBH04	G24049 - SBH05
Depth		0.50-1.00	0.18-0.50	0.50-1.50	0.50-1.50	0.10-0.50
Date Sampled		04/04/2024	04/04/2024	04/04/2024	04/04/2024	04/04/2024
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	08/05/2024	08/05/2024	08/05/2024	08/05/2024	08/05/2024
Date analysed	-	08/05/2024	08/05/2024	08/05/2024	08/05/2024	08/05/2024
pH 1:5 soil:water	pH Units	8.8	8.7	8.6	8.6	7.7
Electrical Conductivity 1:5 soil:water	μS/cm	160	140	180	180	65
Chloride, Cl 1:5 soil:water	mg/kg	22	28	26	49	10
Sulphate, SO4 1:5 soil:water	mg/kg	29	22	20	33	10

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.

QUALITY CONTROL: Misc Inorg - Soil				Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			08/05/2024	4	08/05/2024	08/05/2024		08/05/2024	[NT]
Date analysed	-			08/05/2024	4	08/05/2024	08/05/2024		08/05/2024	[NT]
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	4	8.6	8.7	1	101	[NT]
Electrical Conductivity 1:5 soil:water	µS/cm	1	Inorg-002	<1	4	180	200	11	103	[NT]
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	<10	4	49	58	17	101	[NT]
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	<10	4	33	41	22	107	[NT]

Result Definitions	
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control Definitions		
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.	
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.	
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.	
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.	
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which	

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

are similar to the analyte of interest, however are not expected to be found in real samples.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% - see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

pH/EC was analysed outside of recommended holding time